
Automated Generation of Realistic Test Inputs for Web APIs
Juan C. Alonso

SCORE Lab, Universidad de Sevilla, Seville, Spain

ABSTRACT
Testing web APIs automatically requires generating input data
values such as addressess, coordinates or country codes. Generat-
ing meaningful values for these types of parameters randomly is
rarely feasible, which means a major obstacle for current test case
generation approaches. In this paper, we present ARTE, the first
semantic-based approach for the Automated generation of Realistic
TEst inputs for web APIs. Specifically, ARTE leverages the specifi-
cation of the API under test to search for meaningful test inputs
for the API parameters in knowledge bases like DBpedia. Our ap-
proach has been integrated into RESTest, a state-of-the-art tool for
API testing, achieving an unprecedented level of automation which
allows to generate up to 100% more valid API calls than existing
fuzzing techniques, 30% on average. Evaluation results on a set of
26 real-world APIs show that ARTE can generate realistic inputs
for 7 out of every 10 parameters, outperforming related approaches.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Information systems→ RESTful web services.

KEYWORDS
Web of Data, knowledge base, realistic test input, automated testing,
RESTful API
ACM Reference Format:
Juan C. Alonso. 2021. Automated Generation of Realistic Test Inputs for
Web APIs. In Proceedings of the 29th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3468264.3473491

1 RESEARCH PROBLEM AND MOTIVATION
WebApplication Programming Interfaces (APIs) allow heterogeneous
software systems to interact over the network [16, 20]. Companies
such as Google, Microsoft and Apple provide web APIs to allow
other systems to interact with them programmatically. Most web
APIs adhere to the REpresentational State Transfer (REST) archi-
tectural state, being known as RESTful APIs [14]. RESTful APIs are
commonly specified using languages such as the OpenAPI Specifi-
cation (OAS) [2], which defines a standard notation for describing
RESTful APIs in terms of operations, input parameters, and expected
outputs, among others.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473491

Testing web APIs adequately requires using realistic test inputs
such as country names, codes, coordinates, or addresses. As an ex-
ample, the find-by-address operation in the DHL Location Finder
API [1] requires users to provide valid ISO country codes (e.g., “DE”
for Germany), postal codes (e.g., “10117”), street addresses (e.g.,
“Friedrichstrasse 163”) and localities (e.g., “Berlin”). Gener-
ating meaningful values for such parameters requires analyzing
their name or description. In most cases, generating these values
randomly is infeasible, especially when using a black box testing
approach, resulting in “client error” responses (4XX status code).
To address this issue, most test case generation approaches resort
to data dictionaries: sets of input values collected by the testers,
either manually [19] or, when possible, automatically [22]. This
means a major obstacle for automation since data dictionaries must
be created and maintained for each non-trivial input parameter, on
each API under test.

In this paper, we present an approach for the Automated Gener-
ation of Realistic TEst inputs (ARTE) for web APIs. ARTE exploits
the specification of the various elements of the API under test by
querying knowledges bases to automatically extract realistic test
inputs. In contrast to similar approaches, ARTE includes a novel
step for the automated inference of regular expressions from pre-
viously generated inputs which allows to filter invalid values and
to increase the accuracy of the semantic queries. Furthermore, we
integrated ARTE into RESTest [19], a state-of-the-art tool for black-
box test case generation of RESTful APIs, making our approach
fully automated and publicly available.

2 BACKGROUND AND RELATEDWORK
The Web of Data [12] is a global data space in continuous growth
that contains billions of interlinked queryable data. Resources are
identified using URIs and resource relationships are specified using
RDF (Resource Description Framework) [15], a standard that de-
fines how to identify relationships between resources in the form of
triples composed by a subject, a predicate and an object. The predi-
cate specifies the link that holds between the subject and the object.
ARTE uses the SPARQL language [4] to query datasets represented
as RDF triples (such as DBpedia [13] or Wikidata [24]).

Our work is the first to leverage the Web of Data for improving
test data generation in web APIs. Nevertheless, semantic informa-
tion retrieval techniques have already been applied in the context
of GUI testing. Mariani et al. [18] introduced Link, an approach to
generate realistic test inputs for web, desktop and mobile applica-
tions. Wanwarang et al. [25] presented SAIGEN, an extension of
Link specifically designed for mobile applications. In both cases,
test inputs are extracted from a knowledge base (DBpedia) based
on the labels associated to the input fields of the GUI. Our work
shares similarities with both papers, but also clear differences. On
the one hand, web APIs lack GUIs and are intended for developers,
rather than for users. This poses new challenges, like the need to
resort to other information sources (i.e., the API specification) and

1666

https://doi.org/10.1145/3468264.3473491
https://doi.org/10.1145/3468264.3473491

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Juan C. Alonso

Table 1: Per API breakdown of valid calls generated using
fuzzing techniques, SAIGEN and ARTE.

API Operation Fuzzing (%) SAIGEN (%) ARTE (%)

Amadeus Hotel Find hotels 13 9.2 16.7
Amadeus Hotel View hotel rooms 44.5 23.4 60
Deutschebahn Get stations 19 27.2 44.2
DHL Find by address 0 0.1 70
DHL Find by coordinates 0 97.9 100
OMDb Search 40.1 34.9 35.1
Spotify Get albums 47.9 49 95.4
Spotify Get album 53.6 48.7 97.4
Spotify Get categories 50 49.7 70.2
Spotify Get category 48.7 51.4 74.5
Spotify Get featured playlists 25.2 25.6 35.1
Yelp Fusion Search businesses 31.4 50.9 48.3
Yelp Fusion Search transactions 52.9 70.6 86

Total 32.8 41.4 64.1

to apply different knowledge extraction techniques, such as Nat-
ural Language Processing (NLP) techniques [7, 11, 17, 21, 23]. For
instance, when the name of a parameter is not descriptive enough
(e.g., ‘t’ in the OMDb API). On the other hand, we proposed a
novel approach to iteratively refine test inputs by automatically
generating regular expressions conforming to them.

3 APPROACH AND UNIQUENESS
ARTE is divided into several steps, namely:

Processing test parameters. ARTE receives as inputs the OAS
specification and the list of parameters for which it should generate
meaningful data (this allows to discard trivial parameters like dates
or domain specific identifiers, e.g., a Spotify album ID).

Search for predicates. ARTE applies several matching rules
in the parameter name and description to identify keywords to
use in the search for predicates in the selected knowledge base,
selecting the first predicate that achieves a stablished threshold.
For example, ARTE would select the predicate dbp:webSite for a
parameter named web_site.

Search for test inputs. The predicates retrieved during the
previous step are used to construct SPARQL queries to search for
test inputs. For example, from the predicate dbp:webSite, ARTE
would obtain a list of URLs corresponding to real websites.

Automated generation of regular expressions. The list of
input values may contain entries in different formats (e.g., websites
starting with “https://” and “www”), with only one of them being
accepted by the API. ARTE can optionally learn from previous
API responses by automatically generating a regular expression
that matches only the valid values (e.g., those URLs starting with
“https://”), this regular expression (generated by leveraging a
modified version of RegexGenerator++ [8–10]) is used to filter the
list of input values. Optionally, the regular expression can be used
to conduct a refined search for input values. ARTE provides the
tester with the list of valid and invalid values, enabling both positive
and negative testing.

A prototype of ARTE has been implemented in Java leveraging
the libraries Jena [5], for the creation of SPARQL queries, Stanford
CoreNLP [6], for NLP related tasks, and RegexGenerator++ [8–10],
for the generation of regular expressions.

4 RESULTS AND CONTRIBUTIONS
We compared the effectiveness of ARTE with fuzzing techniques
and SAIGEN —a related tool for the generation of test inputs for
mobile applications [25]. We selected a set of 83 operations belong-
ing to 26 real-world web APIs, 7 of them being industrial APIs
with millions of users worldwide. The remaining 19 APIs were se-
lected among the most popular APIs of the RapidAPI repository [3].
We relied on DBpedia as the selected knowledge base, specifically
the 2016-10 core dataset1. For the preliminary evaluation of our
approach, we conducted two experiments, namely:

Experiment 1: Test input generation. For each parameter,
we tested the API with 10 randomly selected values among those
generated by ARTE. ARTE generated valid inputs for 66.7% of the
parameters (66 out of 99), obtaining realistic inputs for 100% of
the parameters in 9 out of the 26 APIs, and 50% or more in 19 of
them. The automatic generation of regular expressions increased
the percentage of realistic test inputs in 4 out of the 13 APIs for
which ARTE did not initially achieve a 100% of accepted inputs.
On the other hand, SAIGEN only generated realistic values for
38.9% of the parameters, obtaining realistic inputs for 100% of the
parameters in 3 APIs, and 50% or more in 11.

Experiment 2: Generation of valid API calls. We compared
the effectiveness of ARTE, fuzzing and SAIGEN in generating valid
API calls for 13 operations from 6 industrial APIs, depicted in Table
1. For each operation and technique, we generated and executed
1K API calls. The results in Table 1 reveal that ARTE can generate
up to 100% more valid API calls than random techniques, 31.3% on
average. The highest value of each row is highlighted in boldface,
with ARTE achieving the best performance in 11 operations. The
application of ARTE with the automated generation of regular
expressions yielded an improvement of a 13.5% with respect to its
application without this step, obtaining an noticeable improvement
in 6 operations. ARTE obtained up to 70% more valid API calls
than SAIGEN, with an average improvement of 22.7%, showing
that ARTE can significantly improve the results obtained by similar
tools. This improvement is mainly due to the automated generation
of regular expressions and the NLP techniques applied in both the
parameters names and descriptions to obtain keywords for the
search for predicates.

The dataset of our preliminary evaluation is available at http:
//doi.org/10.5281/zenodo.4736860

REFERENCES
[1] 2020. DHL Location Finder API. https://developer.dhl.com/api-reference/

location-finder. Accessed December 2020.
[2] 2020. OpenAPI Specification. https://www.openapis.org accessed December

2020.
[3] 2020. RapidAPI API directory. https://rapidapi.com/marketplace. Accessed

November 2020.
[4] 2020. SPARQL 1.1 Overview. https://www.w3.org/TR/2013/REC-sparql11-

overview-20130321/ Accessed January 2020.
[5] 2021. Apache Jena. https://jena.apache.org/index.html Accessed February 2021.
[6] 2021. Stanford CoreNLP. https://stanfordnlp.github.io/CoreNLP/ Accessed

February 2021.
[7] Vimala Balakrishnan and Ethel Lloyd-Yemoh. 2014. Stemming and lemmatization:

a comparison of retrieval performances. Lecture Notes on Software Engineering
(2014), 262–267. https://doi.org/10.7763/LNSE.2014.V2.134

1http://downloads.dbpedia.org/2016-10/

1667

 http://doi.org/10.5281/zenodo.4736860
 http://doi.org/10.5281/zenodo.4736860
https://developer.dhl.com/api-reference/location-finder
https://developer.dhl.com/api-reference/location-finder
https://www.openapis.org
https://rapidapi.com/marketplace
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://jena.apache.org/index.html
https://stanfordnlp.github.io/CoreNLP/
https://doi.org/10.7763/LNSE.2014.V2.134
http://downloads.dbpedia.org/2016-10/

Automated Generation of Realistic Test Inputs for Web APIs ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[8] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Can
a machine replace humans in building regular expressions? A case study. IEEE
Intelligent Systems 31, 6 (2016), 15–21. https://doi.org/10.1109/MIS.2016.46

[9] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, Fabiano Tarlao, and Marco
Virgolin. 2015. Evolutionary Learning of Syntax Patterns for Genic Interaction
Extraction. In Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference. ACM, 1183–1190. https://doi.org/10.1145/2739480.2754706

[10] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao. 2016. Inference of Regular
Expressions for Text Extraction from Examples. IEEE Transactions on Knowledge
and Data Engineering 28, 5 (May 2016), 1217–1230. https://doi.org/10.1109/TKDE.
2016.2515587

[11] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[12] C. Bizer, T. Heath, and Tim Berners-Lee. 2009. Linked Data - The Story So Far. Int.
J. Semantic Web Inf. Syst. 5 (2009), 1–22. https://doi.org/10.4018/jswis.2009081901

[13] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. 2009. DBpedia-A crystallization
point for the Web of Data. Journal of web semantics 7, 3 (2009), 154–165. https:
//doi.org/10.1016/j.websem.2009.07.002

[14] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation.

[15] Ramanathan Guha and Dan Brickley. 2004. RDF Vocabulary De-
scription Language 1.0: RDF Schema. W3C Recommendation. W3C.
https://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[16] Daniel Jacobson, Greg Brail, and Dan Woods. 2011. APIs: A Strategy Guide.
O’Reilly Media, Inc.

[17] Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[18] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. 2014.
Link: Exploiting the Web of Data to Generate Test Inputs. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis. 373–384.
https://doi.org/10.1145/2610384.2610397

[19] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest:
Black-Box Constraint-Based Testing of RESTful Web APIs. In International Con-
ference on Service-Oriented Computing. 459–475. https://doi.org/10.1007/978-3-
030-65310-1_33

[20] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly Media, Inc.

[21] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 conference of the North American chapter of the association for
computational linguistics on human language technology-volume 1. Association
for Computational Linguistics, 173–180. https://doi.org/10.3115/1073445.1073478

[22] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RestTestGen:
Automated Black-Box Testing of RESTful APIs. In International Conference on
Software Testing, Verification and Validation. https://doi.org/10.1109/ICST46399.
2020.00024

[23] S Vijayarani, Ms J Ilamathi, and Ms Nithya. 2015. Preprocessing techniques for
text mining-an overview. International Journal of Computer Science & Communi-
cation Networks 5, 1 (2015), 7–16.

[24] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledge base. Commun. ACM 57, 10 (Sept. 2014), 78–85. https://doi.org/10.
1145/2629489

[25] TanapuchWanwarang, Nataniel P. Borges, Leon Bettscheider, and Andreas Zeller.
2020. Testing Apps With Real-World Inputs. In Proceedings of the IEEE/ACM
1st International Conference on Automation of Software Test (Seoul, Republic of
Korea) (AST ’20). Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/3387903.3389310

1668

https://doi.org/10.1109/MIS.2016.46
https://doi.org/10.1145/2739480.2754706
https://doi.org/10.1109/TKDE.2016.2515587
https://doi.org/10.1109/TKDE.2016.2515587
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1145/2610384.2610397
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3387903.3389310

	Abstract
	1 RESEARCH PROBLEM AND MOTIVATION
	2 BACKGROUND AND RELATED WORK
	3 APPROACH AND UNIQUENESS
	4 RESULTS AND CONTRIBUTIONS
	References

