
Automated Generation of Test Oracles for RESTful APIs
Juan C. Alonso

SCORE Lab, Universidad de Sevilla, Seville, Spain

ABSTRACT
Test case generation tools for RESTful APIs have proliferated in
recent years. However, despite their promising results, they all
share the same limitation: they can only detect crashes (i.e., server
errors) and disconformities with the API specification. In this paper,
we present a technique for the automated generation of test oracles
for RESTful APIs through the detection of invariants. In practice,
our approach aims to learn the expected properties of the output by
analysing previous API requests and their corresponding responses.
For this, we extended the popular tool Daikon for dynamic detection
of likely invariants. A preliminary evaluation conducted on a set of
8 operations from 6 industrial APIs reveals a total precision of 66.5%
(reaching 100% in 2 operations). Moreover, our approach revealed 6
reproducible bugs in APIs with millions of users: Amadeus, GitHub
and OMDb.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Information systems→ RESTful web services.

KEYWORDS
RESTful APIs, Oracle problem, Invariant detection

ACM Reference Format:
Juan C. Alonso. 2022. Automated Generation of Test Oracles for RESTful
APIs. In Proceedings of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3540250.3559080

1 RESEARCH PROBLEM AND MOTIVATION
WebApplication Programming Interfaces (APIs) allow heterogeneous
software systems to interact over the network [10, 16]. Companies
such as Google, Microsoft and Apple provide web APIs to enable
their integration into third-party systems. Most web APIs adhere
to the REpresentational State Transfer (REST) architectural style,
being known as RESTful APIs [8]. RESTful APIs are commonly spec-
ified using languages such as the OpenAPI Specification (OAS) [2],
which defines a standard notation for describing RESTful APIs in
terms of operations, input parameters, and output formats, among
others.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3559080

Automated test case generation for RESTful APIs is a thriving
research topic due to the key role they play in software integra-
tion [5, 12, 19]. Despite the promising results of existing proposals,
they are all limited by the types of errors they can detect: uncon-
trolled server failures (labelled with a 500 status code) and discon-
formities with the API specification (e.g., the API response contains
a field that is not present in the specification). Generally, there are
several (in the order of dozens or hundreds) possible test oracles
for every API operation. For example, if we perform a search for
songs in the Spotify API by setting a maximum number of results
(limit parameter), the size of the response field containing an ar-
ray of songs should be equal to or smaller than the value of limit.
Currently, creating these kinds of test oracle is a costly and manual
endeavour that requires domain knowledge.

In this paper, we present an approach for the automated genera-
tion of test oracles for RESTful APIs. Our approach is based on the
detection of invariants, that is, properties of the output that should
always hold, e.g., a JSON property from the response should always
have the same value as one of the input parameters. For this, we
developed an extension (so-called instrumenter) of Daikon [7], a
popular tool for dynamic detection of likely invariants. Generated
(likely) invariants can be used as potential test oracles, and they can
also help to identify unexpected behaviour (bugs) in the software
under test.

Preliminary results on a dataset of 8 operations from 6 commer-
cial APIs show the capability of the proposal to generate hundreds
of valid test oracles, obtaining a total precision of 66.5% (up to 100%
in 2 of the operations), More importantly, the generated invariants
uncovered 6 reproducible bugs in the APIs of Amadeus, GitHub,
and OMDb.

2 BACKGROUND AND RELATEDWORK
Most approaches for automated testing of RESTful APIs generate
test cases from an OAS specification by using model based test-
ing [12, 18] or property based testing [9]. Other proposals aim to
infer sequences of operations from the specification [5, 19]. Ac-
cording to a recently published comparative study [15], current
tools for automated testing of RESTful APIs are limited by the types
of oracles that they support (server errors and response format
analysis). This reveals that, despite the significant advances in test
case generation, current techniques are still limited by their fault
detection capabilities. Other authors have proposed using metamor-
phic testing [17], but this technique is only applicable in specific
operations and requires a manually generated specification.

An invariant is a property that is always satisfied at one or more
points in the execution of a program, such as its inputs and outputs
in the context of black-box testing, whereas a likely invariant is a
property that is satisfied by a set of program executions but that
could not be satisfied by a different execution with, for example,
different input values. Automated detection of likely invariants
has shown promising results in different contexts such as learning
postconditions in Java programs [14], relational databases [6], web

1808

https://doi.org/10.1145/3540250.3559080
https://doi.org/10.1145/3540250.3559080

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Juan C. Alonso

applications [13], automated program repair [21], cyber-physical
systems [3, 20] or robotics [11], among others. Nonetheless, this
technique has not been applied yet in the context of RESTful APIs,
despite its potential.

There are several systems for the detection of likely invariants in
program executions, with Daikon [7] being the most widely used.
Daikon detects likely invariants by analyzing an instrumentation
of the execution of a program. This instrumentation process is
performed by an instrumenter, a software that transforms the exe-
cution of a program into a format that can be processed by Daikon.
There are several Daikon instrumenters available for different pro-
gramming languages, such as Java, Perl or C++, and file formats,
such as csv files [1]. Daikon observes the properties of a program
through different executions, returning those properties (i.e., likely
invariants) that are always satisfied.

3 APPROACH
Our approach is divided into two steps:

Instrumentation. We implemented a Daikon instrumenter,
which receives three inputs: 1) the OAS specification of the API
under test, 2) a set of automatically generated test cases (API re-
quests), and 3) the corresponding test case observed outputs (API
responses). This instrumentation consists of a decls file (describing
the format of the API operations inputs and outputs) and a dtrace
file (values assigned to each field of the decls file in each test case).

Invariant detection.The test suite instrumentation is processed
by a modified version of Daikon, resulting in a set of likely in-
variants that can be used as test oracles. Specifically, we modified
Daikon by suppressing 25 invariants unlikely to reveal relevant
information in our context (e.g., comparison of the length of string
properties) and adding 22 domain specific invariants based on an
analysis of a dataset of 48 APIs systematically collected for a pre-
vious paper by the author [4]. This version of Daikon supports a
total of 140 different types of invariants that fall into different cate-
gories such as arithmetic relations (return.track_number>=1), ar-
ray properties (return.hotelId in input.hotelIds[]), specific
values (return.visibility one of {"private", "public"})
or formats (return.href is Url), among many others. New types
of invariants may be targeted in the future. The application of this
approach allows the detection of domain-specific test oracles and
bugs that are not contemplated by existing techniques.

4 RESULTS AND CONTRIBUTIONS
For the evaluation, we selected a set of 8 operations from 6 indus-
trial APIs. For every operation, we automatically generated 1000
successful test cases (i.e., responses returning a 2XX status code)
using the RESTest framework [12]. This set of test cases, along with
their observed output and the corresponding OAS specification,
were fed to the instrumenter, resulting in a set of likely invariants
that we manually classified as true positives, false positives, or bugs.

To check the impact of the size of the test suite in the precision,
each test suite was divided in subsets of 1000, 500, 100 and 50 test
cases, computing the precision achieved for each subset. These
experiments allowed to answer the following Research Questions:

RQ1: Effectiveness of the proposal to generate test oracles.
Table 1 shows the number of invariants (column 3), the precision
(column 4) and the number of bug revealing invariants detected

Table 1: Experimental results. I=Invariants, P=Precision

API Operation I P (%) Bugs

Amadeus Hotel Find hotel offers 99 59.6 1
GitHub List organization repositories 94 74.5 9
OMDb By ID or Title 17 82.4 1
OMDb By Search 6 100 1
Spotify Create Playlist 28 100 0
Spotify Get Album tracks 51 80.4 0
Yelp Search businesses 19 42.1 0
YouTube List videos 187 57.2 0
Total 501 66.5 12

(column 5) when using the set of 1000 test cases. Our approach
achieved a precision of up to 100% in two operations (and a total pre-
cision of 66.5%), detecting tens of domain-specific oracles for every
operation. Most of the false positives (57.7% of them) are arithmetic
comparisons between numeric fields with different scales, such as
the duration in miliseconds of a Spotify song and its number of
artists (return.duration_ms>size(return.artists[])).

RQ2: Impact of the size of the test suite on the precision.
The total precision achieved by the approach ranged between 65.3%
on the set of 50 test cases and 66.5% on the set of 1000 test cases.
Thus, our preliminary results suggest that an increment in the size
of the test suite does not have a significant impact on the precision
achieved.

RQ3: Error detection capabilities. Although the test oracles
can be used to generate assertions, the faulty behavior of an API
could be reflected on an invariant. This allowed our approach to
detect 6 domain specific and reproducible bugs in 4 operations from
3 APIs with millions of users worldwide, namely Amadeus, GitHub
and OMDb.

In the Amadeus Hotel search API, one of the detected invariants
(return.room.typeEstimated.beds >= 0) allowed to identify 55
hotel offers in which the room had zero beds, even though the API
documentation states that every room must have at least one. This
bug has been confirmed and fixed by the API providers.

According to the OAS specification of the “List organization
repositories” operation of the GitHub API, one of the response fields
specifies the template repository used for creating each repository,
if any. Our approach detected that this property was never present
(return.template_repository==null). The API providers con-
firmed that the presence of this field is an inconsistency in the
documentation and created an internal issue to fix it.

The parameter type of the OMDb API operations is used to
filter the obtained results to one media type (“movie”, “episode”
or “series”, according to the documentation). However, one of the
invariants (return.Type one of {"game", "movie", "series"
}) revealed a new value for this parameter that was not specified
in the documentation (“game”) and that the “By Search” operation
does not return elements of type “episode”.

The dataset of our preliminary evaluation is available at https:
//doi.org/10.5281/zenodo.6874668

REFERENCES
[1] 2022. DAIKON instrumenters. https://plse.cs.washington.edu/daikon/download/

doc/daikon.html#Front-ends-_0028instrumentation_0029. Accessed July 2022.
[2] 2022. OpenAPI Specification. https://www.openapis.org accessed July 2022.

1809

https://doi.org/10.5281/zenodo.6874668
https://doi.org/10.5281/zenodo.6874668
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-_0028instrumentation_0029
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-_0028instrumentation_0029
https://www.openapis.org

Automated Generation of Test Oracles for RESTful APIs ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[3] Afsoon Afzal, Claire Le Goues, and Christopher Steven Timperley. 2021. Mithra:
Anomaly Detection as an Oracle for Cyberphysical Systems. IEEE Transactions
on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3120680

[4] Juan C. Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and
Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering (2022). https://doi.org/
10.1109/TSE.2022.3150618

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API
Fuzzing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 748–758. https://doi.org/10.1109/ICSE.2019.00083

[6] Jake Cobb, James A. Jones, Gregory M. Kapfhammer, and Mary Jean Harrold.
2011. Dynamic Invariant Detection for Relational Databases. In Proceedings of the
Ninth International Workshop on Dynamic Analysis (Toronto, Ontario, Canada)
(WODA ’11). Association for Computing Machinery, New York, NY, USA, 12–17.
https://doi.org/10.1145/2002951.2002955

[7] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69,
1 (2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015 Special issue on
Experimental Software and Toolkits.

[8] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph. D. Dissertation.

[9] Zac Hatfield-Dodds and Dmitry Dygalo. 2021. Deriving Semantics-Aware Fuzzers
from Web API Schemas. arXiv preprint arXiv:2112.10328 (2021).

[10] Daniel Jacobson, Greg Brail, and Dan Woods. 2011. APIs: A Strategy Guide.
O’Reilly Media, Inc.

[11] Deborah S Katz, Christopher S Timperley, and Claire Le Goues. 2022. Using
Dynamic Binary Instrumentation to Detect Failures in Robotics Software. arXiv
preprint arXiv:2201.12464 (2022).

[12] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest:
Black-Box Constraint-Based Testing of RESTful Web APIs. In International Con-
ference on Service-Oriented Computing. 459–475.

[13] AliMesbah, Arie vanDeursen, andDanny Roest. 2012. Invariant-BasedAutomatic
Testing of Modern Web Applications. IEEE Transactions on Software Engineering
38, 1 (2012), 35–53. https://doi.org/10.1109/TSE.2011.28

[14] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. 2021.
EvoSpex: An Evolutionary Algorithm for Learning Postconditions. In 2021
IEEE/ACM 43st International Conference on Software Engineering (ICSE). 1223–
1235. https://doi.org/10.1109/ICSE43902.2021.00112

[15] Saurabh Sinha Myeongsoo Kim, Qi Xin and Alessandro Orso. 2022. Automated
Test Generation for REST APIs: No Time to Rest Yet. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis.

[16] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly Media, Inc.

[17] Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-
morphic Testing of RESTful Web APIs. IEEE Transactions on Software Engineering
44, 11 (2018), 1083–1099. https://doi.org/10.1109/TSE.2017.2764464

[18] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2021. Improv-
ing Test Case Generation for REST APIs Through Hierarchical Clustering. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 117–128. https://doi.org/10.1109/ASE51524.2021.9678586

[19] E. Viglianisi, M. Dallago, and M. Ceccato. 2020. RESTTESTGEN: Automated
Black-Box Testing of RESTful APIs. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). 142–152. https://doi.org/10.
1109/ICST46399.2020.00024

[20] Xiaodong Yang, Omar Ali Beg, Matthew Kenigsberg, and Taylor T. Johnson. 2022.
A Framework for Identification and Validation of Affine Hybrid Automata from
Input-Output Traces. ACM Trans. Cyber-Phys. Syst. 6, 2, Article 13 (apr 2022),
24 pages. https://doi.org/10.1145/3470455

[21] Yuntong Zhang, Xiang Gao, Gregory J Duck, and Abhik Roychoudhury. 2022.
Program Vulnerability Repair via Inductive Inference. (2022).

1810

https://doi.org/10.1109/TSE.2021.3120680
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/2002951.2002955
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/TSE.2011.28
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/TSE.2017.2764464
https://doi.org/10.1109/ASE51524.2021.9678586
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1145/3470455

	Abstract
	1 RESEARCH PROBLEM AND MOTIVATION
	2 BACKGROUND AND RELATED WORK
	3 APPROACH
	4 RESULTS AND CONTRIBUTIONS
	References

