
Automated Generation of Metamorphic Relations for
Query-Based Systems

Sergio Segura
sergiosegura@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Juan C. Alonso
javalenzuela@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Alberto Martin-Lopez
alberto.martin@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Amador Durán
amador@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Javier Troya
jtroya@uma.es

ITIS Software, Universidad de Málaga
Malaga, Spain

Antonio Ruiz-Cortés
aruiz@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

ABSTRACT
Searching and displaying data based on user queries is a pervasive
feature of most software applications such as information systems,
web portals, and web APIs. The large volume of data managed
by these types of systems, henceforth called query-based systems
(QBSs), makes them extremely hard to test due to the difficulty to
assess whether the output of a query is correct, the so-called test
oracle problem. Metamorphic testing has proved to be a very effec-
tive approach to alleviate the oracle problem in QBSs, by exploiting
the relations among multiple executions of the QBS under test, so-
called metamorphic relations (MRs). However, the identification of
MRs mostly remains a manual and creative task, limiting the appli-
cability of the approach. In this paper, we propose a method for the
automated generation of MRs in QBSs starting from a lightweight
specification of the query parameters of the system. Evaluation
results show that hundreds of MRs can be automatically identified
in real-world systems like IMDb, SkyScanner, or YouTube in just a
few seconds.

CCS CONCEPTS
• Software and its engineering → Software testing.

KEYWORDS
Metamorphic testing, metamorphic relation, oracle problem.

ACM Reference Format:
Sergio Segura, Juan C. Alonso, Alberto Martin-Lopez, Amador Durán, Javier
Troya, and Antonio Ruiz-Cortés. 2022. Automated Generation of Metamor-
phic Relations for Query-Based Systems. In 7th International Workshop on
Metamorphic Testing (MET’22), May 9, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3524846.3527338

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MET’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9307-2/22/05. . . $15.00
https://doi.org/10.1145/3524846.3527338

1 INTRODUCTION
Most software applications support searching and displaying data
based on user queries. A query specifies user preferences—the data
to be retrieved and how to display it—declaratively using visual
forms or textual languages, which typically support standard oper-
ations such as filtering, ordering or pagination. In what follows, we
refer to software systems supporting user queries as query-based
systems (QBS). Typical examples of QBS are information systems
like OpenERP (supporting queries like “retrieve invoices issued
before 2022”), e-commerce sites like eBay (e.g., “search for micro-
phones under $100”), software project platforms like GitHub (e.g.,
“get Node.js projects with less than 10 committers”), video stream-
ing apps like Netflix (e.g., “order series by popularity”), email clients
like Gmail (e.g., “display messages including the word conference
in the subject”), or even video games like World of Warcraft (e.g.,
“get progression data for character Thrall in Blackrock realm”). Test-
ing QBS is extremely challenging as they suffer from the oracle
problem: it is very difficult, often infeasible, to assess whether the
output of a query is correct, either because the expected output
is unknown or because it is hard to compare it to the observed
output [7, 28].

Metamorphic testing (MT) [9, 25] alleviates the oracle problem
by adopting an innovative approach to testing: instead of checking
the correctness of each individual output, MT looks at the relations
among the input and output of two or more executions of the pro-
gram under test, known as metamorphic relations (MRs). MT has
been successfully applied to detect failures in different types of QBS
including search engines such as Google and Bing [34–36], REST-
ful APIs such as those of Spotify and YouTube [24], e-commerce
sites such as Amazon and Walmart [33], and data repositories like
the NASA’s Data Access Toolkit [15]. MRs in QBS specify the re-
lation between the inputs and outputs of multiple queries. For
example, the following is a simple metamorphic relation for video-
sharing platforms like YouTube and Vimeo: the number of videos
returned in a search for the keyword 𝐾 should be equal or higher
than the number of videos returned in a search for 𝐾 using the
High-Definition filter.

MRs can be often defined at a very abstract level, representing
not a single relation, but a set of MRs. Inspired by this idea, the

https://doi.org/10.1145/3524846.3527338
https://doi.org/10.1145/3524846.3527338

MET’22, May 9, 2022, Pittsburgh, PA, USA Segura et al.

concept of metamorphic relation patterns has been exploited by
different groups of authors [21, 24, 33]. Zhou et al. [33] define a
metamorphic relation pattern as an abstraction that characterizes a
set of (possibly infinitely many)MRs. MR patterns have proved to be
very helpful in guiding testers on the search for MRs with a certain
structure, making the identification of the relations significantly
easier than when starting from scratch. In a previous paper [23], we
presented a catalogue of seven MR patterns to assist testers in the
identification of MRs in QBSs. The “disjoint partitions” pattern, for
example, represents those relations where the outputs of the test
cases should be pairwise disjoint (i.e., they should have no items
in common) because the underlying relation can be partitioned
according to the values of at least one input attribute. In YouTube,
for example, two searches with the same keywords for videos in two
dimensions (2D) and three dimensions (3D) should return disjoint
results, since the same video cannot be 2D and 3D at the same time.
A full description of MR patterns for QBSs is presented in Section 2.

MR patterns have proved to be very helpful in guiding the iden-
tification of MRs in QBSs, however, the identification of the MRs
is still mostly a manual task that requires time and creativity [25].
Automated approaches for the identification of MRs typically target
very specific domains (e.g., [27, 32]), generate false positives (e.g.,
[8, 14, 32]), and require access to the source code [13, 14, 27], in-
put/output datasets [6, 32], or existing MRs [18, 29] of the program
under test. This limits the applicability of the approach and the
degree of automation that can be achieved [25].

In this paper, we present an approach for the automated identifi-
cation of MRs in QBSs by leveraging MR patterns. Starting from a
lightweight specification of the query parameters and a given test
suite, our tool is able to automatically identify instances of the pro-
posed MR patterns for QBSs. Evaluation results with 8 real-world
web applications and APIs show that our approach can efficiently
identify hundreds of MRs in QBSs such as YouTube, IMDb, and
SkyScanner in a few seconds. In contrast to existing approaches, no
access to the source code or previous datasets of input and output
values are required. More importantly, no false positives are gener-
ated, as long as the input specification is correct. These results set
the path for new and exciting research directions on the generation
of MRs driven by the specification and MR patterns.

The paper is structured as follows. Section 2 describes the MR
patterns for QBSs that form the basis of our work. Our approach and
the companion tool, MRG, are presented in Section 3. Experimen-
tal results are reported in Section 4. Limitations, open challenges,
threats to validity, and related work are discussed in Sections 5, 6, 7,
and 8, respectively. Finally, Section 9 concludes the paper.

2 METAMORPHIC RELATION PATTERNS FOR
QBSS

In previous work [23], we presented a catalogue of MR patterns for
QBSs. These patterns are the basis of our proposal. In what follows,
we present a brief summary of each pattern and refer the reader to
the original paper for further details.

Input equivalence. This pattern represents those relations
where the source and the follow-up test cases are equivalent and
therefore their outputs should contain the same items in the same
order, i.e., they should be equal. There exist two typical situations
where this pattern can be instantiated. The first one appears when

input parameters accept equivalent values expressed in different
formats, e.g., 1MB ≡ 1024KB. The second situation appears in most
queries and it is related to default values: it should not matter
whether or not default values of the query parameters are speci-
fied. For example, a search in YouTube specifying no order should
produce exactly the same result as indicating the default order-
ing criterion, which is based on the relevance to the search query.
Lindvall et al. [15] used a rich set of these types of metamorphic
relations to reveal failures in the NASA DAT, a large database of
telemetry data.

Shuffling. This pattern represents those metamorphic relations
where the source and follow–up outputs should contain the same
items regardless of the ordering criteria specified as input. For
example, a search for “hotels in London” in Booking.com should
return the same results regardless of the ordering criteria specified
(price, review score, stars, etc.).

Conjunctive conditions. This pattern groups those relations
where the query is iteratively refined adding new conjunctive con-
ditions such that the results of each test case should be a subset
of the results of the previous ones. This pattern is very common
in query operations where most of the parameters are filters. For
example, suppose we perform a search for YouTube videos of “pets”.
Next, we search for videos of “pets” in three dimension (3D), and
finally we search for videos of “pets” in 3D uploaded after 2018.
Intuitively, the results of the third search (videos of pets in 3D pub-
lished after 2018) should be a subset of the result set of the second
search (videos of “pets” in 3D), and in turn these should be a subset
of the results of the original search (videos of “pets”). This pattern,
and slight variations of it, were extensively used by Zhou et al. in
their papers on testing search engines [34, 36], and also by Segura
et al. in their work on testing RESTful web APIs [24].

Disjunctive conditions. This pattern is similar to the previous
one, but the query is expanded with input disjunctive conditions
such that the results of each test case should be a subset of the
following ones. For example, let us suppose a search in IEEE Xplore
for papers including the word “metamorphic” in their title. Next,
we expand the search to papers including either “metamorphic” OR
“testing”. Naturally, the papers returned in the former search should
be a subset of those found in the second search. This pattern has
been previously exploited in the context of search engines [34, 36].

Disjoint partitions. This pattern represents those relations
where the outputs of the follow–up test cases should be pairwise
disjoint (i.e., they should have no items in common) because the
underlying relation can be partitioned according to the values of at
least one input attribute. For instance, suppose a search in a PayPal
user’s account for refunds with status COMPLETED. Next, let us
suppose a new search is performed in the same account for refunds
with status CANCELLED. The results set of both searches should
have no items in common.

Complete partitions. This pattern is related to the previous one,
and it represents those relations where the union of the follow–up
outputs should contain the same items as the source output because
the underlying relation can be partitioned according to the values
of at least one input attribute. For instance, YouTube videos are
classified according to its duration in short (less than 4 minutes),
medium (between 4 and 20 minutes) and long videos (longer than
20 minutes). Hence, a YouTube search for videos of “testing” should

Automated Generation of Metamorphic Relations for Query-Based Systems MET’22, May 9, 2022, Pittsburgh, PA, USA

return the same videos as the joint result set of three searches for
short, medium, and long videos of “testing”.

3 AUTOMATED GENERATION OF MRS
In this section, we describe the proposed method for the automated
generation of MRs in QBSs and the tool implementing it. Roughly
speaking, our work is based on the observation that, given a QBS
under test and an MR pattern, the applicability of the pattern is
typically related to the existence of a certain type of parameter in
the QBS. For example, the conjunctive conditions pattern is typically
applicable whenever a QBS provides filter parameters for restricting
searches. Hence, we first propose classifying input parameters based
on their potential to create instances of the target patterns. Then,
we propose creating MRs by systematically adding, removing, and
replacing input parameters and their values from the source test
cases.

Our method receives two inputs: 1) an input specification of
the QBS under test, and 2) a set of existing test cases revealing
no failures (i.e., source test cases). The input specification must
include, among others, a classification of the query parameters, as
described next, based on their potential to create MRs derived from
the patterns described in Section 2. Then, a set of transformations
are applied to the input source test cases generating the output
MRs. Those MRs can then be used by testers for the creation of
specific metamorphic test cases, either manually or automatically,
by assigning specific test values to input parameters.

In what follows, we describe the proposed classification of query
parameters, the input specification required by our approach, the
proposed transformations for the generation of MRs, and the tool
support.

3.1 Classification of query parameters
In this section, we present a classification of query parameters using
examples and explaining how they can be used to identify instances
of the patterns presented in Section 2.

Conjunctive filters. These are parameters that allow to restrict
the results of a query. For example, the Category parameter in
Vimeo restricts the search to those videos in a certain category,
e.g., Comedy. This type of parameters are extremely common in
QBSs and they can be used, in isolation or together with similar
parameters, to identify instances of the conjunctive conditions MR
pattern. For example, we could perform a search in Vimeo for videos
of ‘MET’ and then repeat the search restricting it to videos of the
Category ‘Talks’ uploaded in the ‘last 7 days’. The results of the
second search should be a subset of those returned in the first
search.

Disjunctive filters. These are parameters that allow to ex-
pand the results of a query. For example, when searching flights
in SkyScanner the user can submit the parameter Add nearby
airports expanding the search beyond the origin and destination
airports indicated in the form. Analogously to conjunctive filters,
this type of parameters can be used to identify instances of the
disjunctive conditions MR pattern.

Disjoint filters. These are parameters with a discrete set of val-
ues that allow to split the results of a query into disjoint partitions.
For example, the Price parameter in Vimeo makes it possible to

restrict searches to ‘Free’ or ‘Paid’ videos. Whenever this type of
parameter appears, it is possible to identify instances of the disjoint
partitionsMR pattern, e.g. the results of two searches with the same
query for ‘Free’ and ‘Paid’ videos should have no videos in common.

Complete filters. These are parameters with a discrete set of
values that allow to split the results of a query into complete parti-
tions (not necessarily disjoint). For example, the Meals parameter
in TripAdvisor.com allows to restrict the searches for restaurants to
those serving ‘Breakfast’, ‘Brunch’, ‘Lunch’, and/or ‘Dinner’. This
type of parameters enable the generation of instances of the com-
plete partitions MR pattern, e.g., a search for restaurants in ‘Rome’
should return the same items as the joint results of four searches
for restaurants in ‘Rome’ serving ‘Breakfast’, ‘Brunch’, ‘Lunch’, and
‘Dinner’.

Default values. These are optional parameters with explicit
default values. In the Amadeus API, for example, the default number
of flight offers to return (parameter max) is 50. Therefore, calling
the API without the parameter max is equivalent to setting it to
its default value (50). This kind of parameters can be used to find
instances of the input equivalence MR pattern.

Ordering parameters. These are parameters used to specify
the order in which the results will be displayed. Whenever one or
more ordering parameters exist, it is possible to find instances of
the shuffling MR pattern, as long as the number of results is not
limited.

Limit parameters. These are parameters that limit the number
of results to be returned by the query. In contrast to the other types
of parameters, limit parameters are not used to generate MRs. On
the contrary, their inclusion in a test case restricts the applicability
of some of the other parameters for creating MRs and thus they
must be defined explicitly. For example, two searches in YouTube
with the same keyword and different ordering criteria will probably
return different videos if the number of results is limited to 10
(parameter maxResults), making not applicable the shuffling MR
pattern.

Note that the previous classification is not complete and so some
parameters may not fall within any of the categories. Similarly, a
parameter can belong to more than one category and therefore it
can be used for the identification of different types of MRs.

3.2 Input specification
Our approach for the identification of MRs requires an input spec-
ification of the QBS under test. As an example, Figure 1 depicts
the input specification of the operation GET incidents in the
real-world Bikewise web API1 [1]. This operation allows users to
search bicycle incidents by date and location. For the sake of gen-
eralizability, we used a custom domain-independent specification
format using Yet Another Markup Language (YAML) notation and
mostly based on the OpenAPI Specification (OAS) language for
web APIs [3]. The input specification should describe the following
items:

(1) Parameters. For each parameter, the specification should
include, at least, its name, type (or possible values), default
value (if any), and whether the parameter is required or not.

1Some minor changes have been introduced with respect to the real API for illustrative
purposes.

MET’22, May 9, 2022, Pittsburgh, PA, USA Segura et al.

The specification in Figure 1 describes nine parameters (lines
6-56).

(2) Constraints. The specification should include the dependency
constraints among the input parameters such as “A requires
B” or “A excludes B”. Inter-parameter dependencies are very
common in QBSs and it is hardly possible to generate valid
test cases without defining them explicitly [20]. In the Bike-
wise example, one dependency constraint is specified (lines
59-60).

(3) Query parameters. This is the part specific to our approach
(lines 63-82) and it requires each query parameter to be clas-
sified into the categories described in the previous section,
excluding default values, which are typically included in the
specification of each parameter (e.g., line 43). In the example,
there are one ordering parameter, four conjunctive filters,
one disjoint filter, and one complete filter. Notice that the pa-
rameter incident_type falls into three different categories.

It is worth noting that the information related to (1) and (2) is
typically provided in (domain-dependent) standard specification
languages like OAS [3] or RAML [5]. Also, this data is typically
required as input for the generation of combinatorial test cases in
tools like ACTS [31] and PICT [4], and so in this regard our ap-
proach does not place a new burden in the user. Hence, we remark
that our approach could work with any standard specification lan-
guage including the data described above—points (1) and (2)—plus
a lightweight classification of the query parameters based on the
categories described in Section 3.1—point (3).

Regarding the classification of query parameters, it may option-
ally include the specific values that allow a disjoint filter to split the
results of the query into disjoint partitions (property values). In
Figure 1, all the possible values of the parameter incident_type
are selected except ‘all’. Analogously, complete filters must in-
clude an additional property (all_value) indicating the input value
required to return all the possible matches. In the example, this
value is ‘all’, but in other parameters and QBSs it could take a dif-
ferent name (in YouTube this value is typically ‘any’) or ‘empty’,
indicating that all items are returned by default when the parameter
is not provided.

3.3 Generation of metamorphic relations
We propose to identify MRs by applying input transformations to
existing test cases revealing no failures, i.e., source test cases. Specif-
ically, each transformation creates one or more follow-up test cases
by systematically adding, removing or replacing parameters and
their values from the source test case. Each type of input transfor-
mation aims to find instances of a specific MR pattern and relies
on the information provided in the input specification of the QBS
under test.

Figure 2 describes one of the input transformations used in our
work. The transformation tries to find instances of the conjunctive
conditions MR pattern by removing one or more conjunctive fil-
ters from the source test case (if any). In the example, a follow-up
test case is created by removing the filter incident_type from the
source test case. As a result, a MR is created including the source test
case and the follow-up test case derived from it, plus an output rela-
tion (oracle), which is specific for each type of input transformation.

Figure 1: Bikewise API input specification.

Notice that the values of the parameters that have no effect in the
output relation are left undefined in the MR, making it reusable (a
key property of MRs). This makes it possible to instantiate each MR
into multiple specific metamorphic tests, e.g., by assigning different
values to the parameters per_page, query, and incident_type in
the example. Also, note that the relation is presented succinctly for

Automated Generation of Metamorphic Relations for Query-Based Systems MET’22, May 9, 2022, Pittsburgh, PA, USA

Figure 2: Input transformation removing conjunctive filters.

Figure 3: Input transformation replacing the values of disjoint filters.

readability, but it can be automatically translated to a user-friendly
version using natural language (see Section 4.2).

Figure 3 depicts another type of input transformation. The trans-
formation aims to find instances of the disjoint partitions pattern by
replacing the value of a disjoint filter. In the example, two follow-up
test cases are created by replacing the value of the disjoint filter
incident_type by ‘crash’, and ‘hazard’, respectively. The re-
sulting MR is composed of a source test case, two follow-up test
cases, and the corresponding output relation, i.e., the result sets of
the three test cases should have no items in common.

Each type of input transformation may require the source test
case to meet some pre-conditions like including or excluding a cer-
tain type of parameter (see examples in Figures 2 and 3). Similarly,
some transformations could violate the dependencies among input
parameters (defined in the input specification) and this must be
checked to avoid invalid test cases. Finally, notice that input trans-
formations can be applied in different ways creating different MRs.
For example, we could remove n parameters at once in a single
follow-up test case, or we could remove one parameter at a time
along n different follow-up test cases.

3.4 Tool support
Our approach is supported by a Java tool, MRG (Metamorphic Rela-
tion Generator), for the automated generation of MRs for QBSs [2].
The tool receives two inputs, namely: 1) an input specification of
the QBS under test in YAML notation (see example in Figure 1),
and 2) a test suite in comma separated format (CSV), where each
test case is a list of pairs <parameter,value>. For each input test
case, the tool tries to identify random instances of each MR pattern
by applying nine different input transformations, as described in
Section 3.3. Different stopping criteria can be configured, including
a maximum number of iterations or a specific number of MRs to
be generated. Two MRs are considered as duplicates if they use the

same source test case and apply exactly the same changes (adding,
removing, modifying input parameters) on each follow-up test case.
Duplicated MRs are automatically discarded. Output MRs can be
written in a machine-readable format (CSV) or in natural language
following the MR template proposed by Segura et al. [22], making
them homogeneous and easier to understand by users.

4 EVALUATION
We aim to study the efficacy and the effectiveness of our approach
in identifying MRs in real-world QBSs, including the number and
shape of the identified relations, as well as the performance of the
proposed method. In what follows, we describe the setup and the
results of the experiment.

4.1 Experimental setup
We assessed the effectiveness of MRG at identifying MRs in 8 real-
world QBSs, including both web applications and web APIs from
different domains, listed in Table 1. For each subject QBS, the table
shows the specific use case, number of parameters, number of
constraints, and number of each type of query parameter according
to the classification presented in Section 3.1.

For each QBS, we wrote an input specification in YAML notation
as described above and we generated a test suite (source test cases)
using the Pairwise Independent Combinatorial Tool (PICT), by
Microsoft [4]. Then, we ran MRG with both inputs to identify as
many random MRs as possible. As the stopping criterion, we set as
the maximum number of iterations for each input transformation
the number of query parameters in the QBS potentially applicable
to the transformation. Hence, for example, if the system under
test has 5 conjunctive filters, we tried to generate instances of the
conjunctive conditions MR pattern 5 times at most for each source
test case. The generation of MRs was repeated 10 times to mitigate
the effect of randomness. During our preliminary tests, we found

MET’22, May 9, 2022, Pittsburgh, PA, USA Segura et al.

Name Use case Parameters Constraints MT Parameter Specification
Conjunctive Disjunctive Disjoint Complete Ordering Defaults Limit

IMDb Title search 32 0 27 0 2 7 1 6 0
iTunes Search 10 48 4 0 3 4 0 6 1
Kickstarter Discover projects 14 157 13 0 9 7 1 2 0
Prestashop List orders 11 0 9 0 2 2 1 1 0
SkyScanner Flight search 14 15 1 2 0 0 0 4 0
Steam Search store 14 0 13 0 1 1 1 1 0
Transfermarkt Personal data search 16 0 15 0 4 1 0 0 1
YouTube Search 31 56 24 0 8 5 1 16 1

Table 1: Subject query-based systems.

Name Source test cases Metamorphic relations Follow-up test cases Time (s)
CC DC DP CP S IE Total Min Max Avg

IMDb 20 1017.8 0 29.1 6 20 0 1072.9 1 6 3.19 41.54
iTunes 15 0 0 18.7 0 0 45.8 64.5 1 6 2.27 0.09
Kickstarter 18 332.2 0 106.6 42.2 18 0 499 1 6 2.56 2.89
Prestashop 18 232.3 0 11 7 36 0 286.3 1 6 2.32 0.62
SkyScanner 12 6 10.9 0 0 0 0 16.9 1 2 1.21 0.03
Steam 17 372.1 0 11 0 29 5 417.1 1 6 2.70 1.55
Transfermarkt 20 0 0 72 0 0 0 72 1 6 3.55 0.12
YouTube 64 0 0 159.4 0 0 98.6 258 1 3 1.23 1.89

Table 2: Metamorphic relations identified (average of 10 executions). CC: Conjunctive Conditions, DC: Disjunctive Conditions,
DP: Disjoint Partitions, CP: Complete Partitions, S: Shuffling, IE: Input Equivalence.

that in some QBS the MRs identified had over 200 follow-up test
cases (e.g., due to a Language parameter with +300 possible values
in IMDb), which is clearly hard to manage and quite inefficient. To
avoid this, in our experiments we restricted the maximum number
of follow-up test cases to 6.

The experiments were performed on a MacBook Pro laptop
equipped with an M1 CPU, 16GB RAM, and 256GB SSD running
macOS Big Sur and Java 11. The code and data for replicating the
experiment are available on GitHub [2] (release “MET22").

4.2 Experimental results
Table 2 depicts the results of the identification of MRs in the subject
QBSs. For each QBS, the table shows the number of source test cases,
number of MRs identified from each pattern, number of follow-up
test cases, and execution time. As illustrated, the total number
of MRs identified ranged from 16.9 in SkyScanner to 1072.9 in
IMDb. Not surprisingly, we found that the number of MRs identified
increases with the number of query parameters in the QBS and
the number of source test cases used as input, except in those
cases where there are limit parameters. The average number of
follow-up test cases ranged from 1.21 in SkyScanner to 3.55 in
Transfermarkt. Execution times remained below 3 seconds in all
systems, except IMDb due to the high number of MRs generated
(+1K). It is worth highlighting that the applied transformations are
based on widely accepted MR patterns for QBSs, and therefore the
generated relations should be valid by construction. This means that
there should not be false positives, assuming the input specifications
are correct. To check the correctness of the generated relations, we

manually reviewed 20 MRs for each system (160 in total), among
those generated by MRG, finding no inconsistencies.

As an example, the following is one of the MRs automatically
generated by MRG on the videogame platform Steam, automatically
written using the MR template proposed by Segura et al. [22].

In the domain of Steam (https://store.steampowered.com/search/)
the following metamorphic relation(s) should hold

• MR77:
if a source test case is run with the inputs [sortBy, price,

tag, numberOfPlayers, feature]
and a follow-up test case is constructed by removing the

following parameters [feature, tag]
and a follow-up test case is constructed by removing the

following parameters [numberOfPlayers, price]
then the follow-up output(s) should be a (non-strict) super-

set of the source test output.

5 LIMITATIONS
We identify several limitations to be addressed in future work. First,
andmore importantly, the fault detection capability of the generated
MRs should be empirically evaluated. Their resemblance to the
manual MRs used in related papers, however, makes us confidence
in their ability to reveal failures. Also, the number of MRs can be
very high, which makes it necessary to identify the most relevant
MRs, as described in the next section.

https://store.steampowered.com/search/

Automated Generation of Metamorphic Relations for Query-Based Systems MET’22, May 9, 2022, Pittsburgh, PA, USA

In technical terms, MRG only supports assigning a single value
to each parameter. In practice, however, we found parameters that
can take multiple values at the same time for either filtering the
results or expanding them (e.g., parameter Title Type in IMDb).
Also, two MRs are considered as duplicates when they are identical.
However, two MRs could still be very similar if they apply the same
input transformations in different order. Hence, implementing more
sophisticated methods for removing duplicated MRs will be part
of our future work too. Finally, transformations are applied on
isolation for simplicity. However, there is potential in combining
the different types of transformations (and therefore MR patterns)
resulting in more and more complex MRs.

6 OPEN CHALLENGES
Our work opens exciting research challenges, among others:

Application to other domains. One of the strengths of our
approach lies on its applicability to potentially any domain where
MR patterns can be identified. This could be the case of artificial
intelligence applications, for example, where the same types of MRs
are frequently reused. Hence, we envision new contributions on
the application of similar ideas to other domains enhancing the
applicability of metamorphic testing in practice.

Specification inference. The creation of the system specifica-
tion, and in particular the classification of input parameters—key
point of the proposed method—is a manual endeavour. We may
remark, however, that this is a one-time effort that clearly pays off
once the specification is used for the generation of MRs. Despite
this, we envision potential research opportunities on the automated
inference and classification of input parameters, e.g., using artificial
intelligence methods.

Full test automation. The generation of MRs is the key point
for the successful application of metamorphic testing, but not the
only one. Automating the whole testing process (MR generation
+ test case generation + test case execution) would contribute to
fully leverage the proposed method and achieve an unprecedented
level of automation.

Selection, prioritization, and minimization of MRs. One
of the main limitations of our approach lies in the high number of
MRs generated. Using all of them is possibly not affordable in prac-
tice. Hence, there is a need for selecting those with more chances
of revealing failures. Alternatively, they could be reordered (i.e.,
prioritized) such that failures can be detected as soon as possible,
or minimized by identifying redundant MRs that can be safely re-
moved without impacting the fault detection capability of the final
test suite [30]. Automatically selecting, prioritizing, and minimiz-
ing MRs is therefore an open challenge, especially in those cases
where, as in our experiment, the source code is not available. We
envision techniques exploiting previous ideas on test case and MR
diversity [11, 12, 16].

7 THREATS TO VALIDITY
We identify the following validity threats.

Internal validity. Are there factors that might affect the results
of our evaluation? For the evaluation, input specifications were
manually created from the API specification or the web GUI of
the QBSs under test. It is therefore possible that the specifications

deviate from the actual QBS’s behaviour. To mitigate this threat,
each of the specification files were carefully reviewed by at least two
authors, and we generated MRs for 8 different real-world systems.

The applied transformations are based on well known MR pat-
terns for QBSs and therefore the generated relations should be valid
by construction. It is possible, however, that a bug in our tool would
lead to erroneous MRs. To mitigate this threat, we carefully tested
our tool (JUnit test cases are available in GitHub [2]). Also, we
manually reviewed many of the generated MRs without finding
any inconsistency.

External validity. To what extent can we generalize the findings
of our investigation? We evaluated our approach on a subset of QBSs
and therefore our conclusions could not generalize beyond that.
To mitigate this threat, we evaluated MRG on 8 popular industrial
systemswithmillions of usersworldwide, whichmakes us confident
of the generalizability of our results.

8 RELATEDWORK
Some related approaches have also achieved a high degree of au-
tomation on the identification of MRs. Kanewala and Bieman [13,
14] proposed several machine learning-based methods for the in-
ference of MRs for scientific programs by analyzing their source
code. Zhang et al. [32] presented a search-based algorithm for the
inference of polynomial MRs for numerical programs based on
the analysis of the program’s inputs and outputs. Troya et al. [27]
proposed a tool-supported method for the automated generation
of MRs for model transformation programs based on the use of
patterns and the analysis of execution traces. Ayerdi et al. [6] pro-
posed a multi-objective search algorithm for generating numerical
MRs by iteratively modifying test assertions trying to minimize the
number of false positives and false negatives with respect to a set
of correct and incorrect executions of the program under test. Blasi
et al. [8] presented MEMO, a technique and a tool to automatically
derive metamorphic equivalence relations from natural language
code documentation. Several groups of authors have proposed to
create MRs by combining existing ones [18, 29]. Compared to re-
lated approaches, our method does not require access to the source
code, input/output values, or existing MRs of the program under
test. Instead, we rely on a lightweight classification of the input
parameters based on existing MR patterns. This allows to efficiently
generate MRs without false positives (assuming the input specifica-
tion is correct), a common limitation of existing approaches.

Liu et al. [19] presented MTKeras, a metamorphic testing tool
for machine learning programs built upon the Keras platform and
writen in Python. The tool integrates common input transforma-
tions (e.g., modifying the input data by addition or multiplication),
and output relations (e.g., subsume/subset) based on existing MR
patterns. The user can then easily apply MRs over a set of source
test cases by combining the supported input transformation and
output relations. Their work is closely related to ours in the sense
that it exploits existing MR patterns to support the construction of
MRs. However, it is still up to the user to define the MRs, whereas in
our work those are automatically generated from the specification.

Some approaches aim to assist the tester on the identification of
MRs. Sun et al. [26] presented METRIC+, a systematic methodology

MET’22, May 9, 2022, Pittsburgh, PA, USA Segura et al.

and a tool to assist testers on the identification of MRs by effec-
tively portioning the input and output domains. A key strength
of METRIC+ lies on its scope, being applicable to a wide range of
applications. Compared to our work, however, it requires more
user involvement for the identification of partitions, constraints,
and the definition of the final MRs. Other authors have proposed
guidelines for the identification of effective MRs [10, 17] and MR
patterns [24, 33] to ease their identification. However, in both cases
the identification of the relations is manual, in contrast to our ap-
proach, where they are automatically generated.

9 CONCLUSIONS
In this paper, we presented a method and a companion tool for the
automated generation of MRs for QBSs starting from a lightweight
classification of the input parameters and a set of existing test cases.
Input parameters are classified according to their potential to cre-
ate instances of existing MR patterns. Evaluation results with 8
real-world systems show that hundreds of MRs can be automati-
cally generated in a few seconds. These results open exciting new
research directions on the automated generation of MRs driven by
the specification and MR patterns.

ACKNOWLEDGMENTS
Thiswork has been supported by the EuropeanCommission (FEDER)
and Junta de Andalucia under projects EKIPMENT-PLUS (P18-FR-
2895), APOLO (US-1264651), and MEMENTO (US-1381595), by the
Spanish Government (FEDER/Ministerio de Ciencia e Innovación –
Agencia Estatal de Investigación) under project HORATIO (RTI2018-
101204-B-C21), and the FPU scholarship program (FPU17/04077).

REFERENCES
[1] [n.d.]. Bikewise: Bicycle Incident Reporting API . https://github.com/bikeindex/

bikewise. Accessed Jan 2022.
[2] [n.d.]. MRG (Metamorphic Relation Generator). https://github.com/ssegura/MRG.

Accessed Jan 2022.
[3] [n.d.]. OpenAPI Specification. https://www.openapis.org. Accessed Jan 2022.
[4] [n.d.]. Pairwise Independent Combinatorial Testing Tool. https://github.com/

microsoft/pict. Accessed Jan 2022.
[5] [n.d.]. RESTful API Modeling Language. http://raml.org/. Accessed Jan 2022.
[6] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, and

Maite Arratibel. 2021. Generating Metamorphic Relations for Cyber-Physical
Systems with Genetic Programming: An Industrial Case Study. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1264–1274. https:
//doi.org/10.1145/3468264.3473920

[7] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The Oracle
Problem in Software Testing: A Survey. Software Engineering, IEEE Transactions
on 41, 5 (May 2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[8] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Antonio
Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in
Javadoc comments for test automation. Journal of Systems and Software 181
(2021), 111041. https://doi.org/10.1016/j.jss.2021.111041

[9] T. Y. Chen, S. C. Cheung, and S. M. Yiu. 1998. Metamorphic Testing: A New
Approach for Generating Next Test Cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology.

[10] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou. 2004. Case Studies on the
Selection of Useful Relations in Metamorphic Testing. In Proceedings of the 4th
Ibero-American Symposium on Software Engineering and Knowledge Engineering
(JIISIC 2004). 569–583.

[11] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T.H. Tse. 2010. Adaptive
Random Testing: The ART of test case diversity. Journal of Systems and Software
83, 1 (2010), 60–66. https://doi.org/10.1016/j.jss.2009.02.022 SI: Top Scholars.

[12] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving Scalable
Model-Based Testing through Test Case Diversity. 22, 1 (2013).

[13] U. Kanewala and J. M. Bieman. 2013. Using machine learning techniques to
detect metamorphic relations for programs without test oracles. In IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE), 2013. 1–10.
https://doi.org/10.1109/ISSRE.2013.6698899

[14] U. Kanewala, J. M. Bieman, and A. Ben-Hur. 2015. Predicting metamorphic
relations for testing scientific software: a machine learning approach using graph
kernels. Software Testing, Verification and Reliability (2015). https://doi.org/10.
1002/stvr.1594

[15] M. Lindvall, D. Ganesan, R. Ardal, and R.E. Wiegand. 2015. Metamorphic Model-
Based Testing Applied on NASA DAT – An Experience Report. In Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Int. Conference on, Vol. 2. 129–138.
https://doi.org/10.1109/ICSE.2015.348

[16] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. 2014. How Effec-
tively DoesMetamorphic Testing Alleviate the Oracle Problem? IEEE Transactions
on Software Engineering 40, 1 (2014), 4–22. https://doi.org/10.1109/TSE.2013.46

[17] H. Liu, F-C. Kuo, D. Towey, and T. Y. Chen. 2014. How Effectively Does Meta-
morphic Testing Alleviate the Oracle Problem? Software Engineering, IEEE Trans-
actions on 40, 1 (Jan 2014), 4–22. https://doi.org/10.1109/TSE.2013.46

[18] H. Liu, X. Liu, and T. Y. Chen. 2012. A NewMethod for ConstructingMetamorphic
Relations. In 12th Int. Conference on Quality Software (QSIC), 2012. 59–68. https:
//doi.org/10.1109/QSIC.2012.10

[19] Yelin Liu, Yang Liu, Tsong Yueh Chen, and Zhi Quan Zhou. 2020. A Testing Tool
for Machine Learning Applications. Association for Computing Machinery, New
York, NY, USA, 386–387. https://doi.org/10.1145/3387940.3392694

[20] Alberto Martin-Lopez, Sergio Segura, Carlos Muller, and Antonio Ruiz-Cortes.
2021. Specification and Automated Analysis of Inter-Parameter Dependencies in
Web APIs. IEEE Transactions on Services Computing (2021). In press.

[21] S. Segura. 2018. Metamorphic Testing: Challenges Ahead (Keynote Speech).
In Proceedings of the 3rd International Workshop on Metamorphic Testing (ICSE
MET’18). ACM, New York, NY, USA, 1. https://doi.org/10.1145/3193977.3193986
Slides: http://personal.us.es/sergiosegura/files/presentations/segura18-MET.pdf.

[22] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz Cortés. 2017. A
Template-Based Approach to Describing Metamorphic Relations. In Proceedings
of the 2nd Int. Workshop on Metamorphic Testing (MET ’17). IEEE Press, 3–9.

[23] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés. 2019.
Metamorphic Relation Patterns for Query-based Systems. In Proceedings of the 4th
International Workshop on Metamorphic Testing (MET ’19). IEEE Press, Piscataway,
NJ, USA, 24–31. https://doi.org/10.1109/MET.2019.00012

[24] S. Segura, J.A. Parejo, J. Troya, and A. Ruiz-Cortés. 2018. Metamorphic Testing of
RESTful Web APIs. IEEE Transactions on Software Engineering 44, 11 (Nov 2018),
1083–1099. https://doi.org/10.1109/TSE.2017.2764464

[25] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. 2018. Metamorphic Testing:
Testing the Untestable. IEEE Software (2018). https://doi.org/10.1109/MS.2018.
2875968

[26] Chang-Ai Sun, An Fu, Pak-Lok Poon, Xiaoyuan Xie, Huai Liu, and Tsong Yueh
Chen. 2021. METRIC+ : A Metamorphic Relation Identification Technique Based
on Input Plus Output Domains. IEEE Transactions on Software Engineering 47, 9
(2021), 1764–1785. https://doi.org/10.1109/TSE.2019.2934848

[27] J. Troya, S. Segura, and A. Ruiz-Cortés. 2018. Automated inference of likely
metamorphic relations formodel transformations. Journal of Systems and Software
136 (2018), 188 – 208. https://doi.org/10.1016/j.jss.2017.05.043

[28] E. J. Weyuker. 1982. On Testing Non-Testable Programs. Comput. J. 25, 4 (1982),
465–470.

[29] P. Wu. 2005. Iterative Metamorphic Testing. In 29th Annual International Com-
puter Software and Applications Conference, 2005. COMPSAC 2005, Vol. 1. 19–24.

[30] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. 22, 2 (2012). https://doi.org/10.1002/stv.430

[31] Linbin Yu, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. 2013. ACTS: A Com-
binatorial Test Generation Tool. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 370–375.

[32] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei. 2014. Search-
based Inference of Polynomial Metamorphic Relations. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering (ASE ’14).
ACM, New York, NY, USA, 701–712. https://doi.org/10.1145/2642937.2642994

[33] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey. 2018. Metamorphic Relations
for Enhancing System Understanding and Use. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2876433

[34] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen. 2007. Automated functional testing
of web search engines in the absence of an oracle. Technical Report TR-2007-06.
Department of Computer Science, The University of Hong Kong.

[35] Z. Q. Zhou, S. Xiang, and T. Y. Chen. 2016. Metamorphic Testing for Software
Quality Assessment: A Study of Search Engines. IEEE Transactions on Software En-
gineering 42, 3 (March 2016), 264–284. https://doi.org/10.1109/TSE.2015.2478001

[36] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F-C. Kuo, and T. Y. Chen.
2012. Automated Functional Testing of Online Search Services. Software Testing,
Verification and Reliability 22, 4 (June 2012), 221–243. https://doi.org/10.1002/
stvr.437

https://github.com/bikeindex/bikewise
https://github.com/bikeindex/bikewise
https://github.com/ssegura/MRG
https://www.openapis.org
https://github.com/microsoft/pict
https://github.com/microsoft/pict
http://raml.org/
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1109/ISSRE.2013.6698899
https://doi.org/10.1002/stvr.1594
https://doi.org/10.1002/stvr.1594
https://doi.org/10.1109/ICSE.2015.348
https://doi.org/10.1109/TSE.2013.46
https://doi.org/10.1109/TSE.2013.46
https://doi.org/10.1109/QSIC.2012.10
https://doi.org/10.1109/QSIC.2012.10
https://doi.org/10.1145/3387940.3392694
https://doi.org/10.1145/3193977.3193986
http://personal.us.es/sergiosegura/files/presentations/segura18-MET.pdf
https://doi.org/10.1109/MET.2019.00012
https://doi.org/10.1109/TSE.2017.2764464
https://doi.org/10.1109/MS.2018.2875968
https://doi.org/10.1109/MS.2018.2875968
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/10.1016/j.jss.2017.05.043
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/2642937.2642994
https://doi.org/10.1109/TSE.2018.2876433
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1002/stvr.437
https://doi.org/10.1002/stvr.437

	Abstract
	1 Introduction
	2 Metamorphic relation patterns for QBSs
	3 Automated generation of MRs
	3.1 Classification of query parameters
	3.2 Input specification
	3.3 Generation of metamorphic relations
	3.4 Tool support

	4 Evaluation
	4.1 Experimental setup
	4.2 Experimental results

	5 Limitations
	6 Open challenges
	7 Threats to validity
	8 Related work
	9 Conclusions
	Acknowledgments
	References

