
AGORA: Automated Generation of Test Oracles for REST APIs

Juan C. Alonso
javalenzuela@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Sergio Segura
sergiosegura@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Antonio Ruiz-Cortés
aruiz@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

ABSTRACT

Test case generation tools for REST APIs have grown in number

and complexity in recent years. However, their advanced capabil-

ities for automated input generation contrast with the simplicity

of their test oracles, which limit the types of failures they can de-

tect to crashes, regressions, and violations of the API speci�cation

or design best practices. In this paper, we present AGORA, an ap-

proach for the automated generation of test oracles for REST APIs

through the detection of invariants—properties of the output that

should always hold. In practice, AGORA aims to learn the expected

behavior of an API by analyzing previous API requests and their

corresponding responses. For this, we extended the Daikon tool

for dynamic detection of likely invariants, including the de�nition

of new types of invariants and the implementation of an instru-

menter called Beet. Beet converts any OpenAPI speci�cation and a

collection of API requests and responses to a format processable by

Daikon. As a result, AGORA currently supports the detection of up

to 105 di�erent types of invariants in REST APIs. AGORA achieved

a total precision of 81.2% when tested on a dataset of 11 operations

from 7 industrial APIs. More importantly, the test oracles gener-

ated by AGORA detected 6 out of every 10 errors systematically

seeded in the outputs of the APIs under test. Additionally, AGORA

revealed 11 bugs in APIs with millions of users: Amadeus, GitHub,

Marvel, OMDb and YouTube. Our reports have guided developers

in improving their APIs, including bug �xes and documentation

updates in GitHub. Since it operates in black-box mode, AGORA

can be seamlessly integrated into existing API testing tools.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Information systems→ RESTful web services.

KEYWORDS

REST APIs, test oracle, invariant detection, automated testing

ACM Reference Format:

Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés. 2023. AGORA:

Automated Generation of Test Oracles for REST APIs. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598114

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598114

1 INTRODUCTION

Web Application Programming Interfaces (APIs) allow heteroge-

neous software systems to interact over the network [48, 68]. Mod-

ern web APIs typically adhere to the REpresentational State Trans-

fer (REST) architectural style, being referred to as REST APIs [32].

REST APIs are decomposed into multiple resources (e.g., a payment

in the VISA API [9]) that clients can manipulate through HTTP

interactions. REST APIs have become the de facto standard for

software integration, being a key part of the business model of

companies such as Amazon, Google, Net�ix, or Twitter [48]. The

importance and pervasiveness of REST APIs is re�ected on the num-

ber of APIs hosted by popular API repositories such as RapidAPI

(40K) [3].

The critical role of REST APIs in software integration has driven

the creation of numerous techniques and tools for the automated

detection of faults within these APIs [41, 51]. Most techniques

adopt a black-box approach, where test cases are automatically

derived from the speci�cation of the API under test, typically in

the OpenAPI Speci�cation (OAS) format [2]. These test cases are

created by setting values to the input parameters and checking the

validity of the returned responses by applying di�erent test ora-

cles, i.e., mechanisms to determine whether a test execution reveals

a fault [19]. Despite the capabilities of these tools for detecting

faults in industrial APIs [15, 16, 39, 59], they are all limited by the

types of failures that they can detect, namely crashes (responses

with a 5XX HTTP status code) [14, 15, 44, 50, 57, 75, 78], discon-

formities with the API speci�cation (e.g., missing output JSON

property) [14, 44, 50, 57, 75], regressions [35, 39], and violations of

API best practices (e.g., checking that the results of multiple calls to

idempotent operations are identical) [16, 18, 74, 82]. As an example,

Listing 2 shows a response for the “getAlbumTracks” operation of

the Spotify API. The response conforms to the API speci�cation and

therefore would be considered as a correct output by existing tools.

However, the response could still contain errors that would go un-

noticed by current tool support, including incorrect �eld length or

format, and violations of numerical constraints or array properties,

among others. Recent surveys [41] and tool comparisons [51, 59]

have identi�ed the generation of test oracles as one of the major

challenges in the generation of test cases for REST APIs. This is the

problem that motivates our work.

The automated generation of test oracles is an active research

topic. Existing approaches mostly di�er on the inputs from which

test oracles are generated, including source code [28, 77], program

speci�cations [34, 47], documentation [20, 40], and previous execu-

tions [61, 63], among others. A common approach for test oracle

1018

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-1177-9262
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0001-9827-1834
https://doi.org/10.1145/3597926.3598114
https://doi.org/10.1145/3597926.3598114

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

generation is the detection of likely invariants, properties of the

program that should always hold, e.g., “8=?DC .E0A ≠ =D;; ⇒ out-

put.array is ordered”. Invariants are often discovered by analyzing

previous program inputs and outputs, making this method suitable

for programs written in di�erent languages or for cases where the

source code is not available, such as REST APIs. This is the strategy

leveraged in our work.

In this paper, we present AGORA, a black-box approach for the

Automated Generation of Oracles for REST APIs. AGORA relies on

the detection of likely invariants. For this purpose, we extended and

modi�ed the Daikon [31] system for dynamic invariant detection in

two directions. Firstly, we present a novel software tool—a Daikon

instrumenter called Beet—that converts any OAS speci�cation and

a set of API requests and responses into a format processable by

Daikon. This makes our approach seamlessly integrable into ex-

isting API testing tools supporting OAS. Secondly, we further en-

hanced the capabilities of Daikon by customizing and expanding its

default set of invariants. Currently, AGORA supports the detection

of 105 distinct types of invariants in REST APIs.

Evaluation results using 11 operations from 7 industrial APIs

showed that a diverse set of just 50 API requests (and their corre-

sponding responses) is su�cient for AGORA to learn hundreds of

accurate invariants (test oracles), achieving a precision of 73.2%.

This precision improves to 81.2% when learning from 10K API re-

quests. These results surpass those obtained using the default set of

invariants in Daikon, with a precision under 52%. We also evaluated

the e�ectiveness of the generated test oracles in detecting failures

by automatically seeding 1.1M errors in the outputs of the API op-

erations under test. The test oracles generated by AGORA, learned

from only 50 API requests, were able to detect 57.3% of the incorrect

outputs, supporting the cost-e�ectiveness of our approach.

During our evaluation, AGORA generated several invariants that

indicated issues within the target APIs. One example was the invari-

ant return.room.typeEstimated.beds >= 0, which revealed a

bug in the Amadeus API where certain hotel o�ers included rooms

with zero beds. This issue was reported and con�rmed by Amadeus

developers. Overall, AGORA resulted in the detection of 11 faults (4

con�rmed, 2 �xed) in 7 operations of 5 industrial APIs, all of which

would have passed unnoticed by current test case generators. Our

�ndings also led to updates in the documentation of GitHub. This

highlights the value of AGORA not only as a test oracle generation

approach, but also as a testing technique on its own.

In summary, after introducing the background and related work

on testing REST APIs, test oracle generation, and Daikon (Section 2),

this paper presents the following original research and engineering

contributions:

• AGORA, a black-box approach for the automated generation

of test oracles for REST APIs based on the analysis of the API

speci�cation and previous requests and responses (Section 3).

• Beet, a novel Daikon instrumenter for REST APIs readily in-

tegrable into existing test case generation tools for REST sup-

porting OAS. Beet is open-source and available on GitHub [5].

• A customized version of Daikon supporting the detection of

105 distinct types of invariants in REST APIs.

• An empirical evaluation of AGORA in terms of precision and

failure detection in 11 operations from 7 industrial APIs (Sec-

tion 4), including reports of 11 real-world bugs (Section 5).

• A publicly available replication package including the source

code and the data used in our work, as well as a pre-con�gured

virtual machine to ease reproducibility and replicability [7].

We address the threats to validity in Section 6, and conclude the

paper in Section 7.

A very preliminary version of this work (two-page paper) ob-

tained the �rst prize (graduate category) in the ACM Student Re-

search Competition in ESEC/FSE 2022 [11] and the second prize in

the ACM SRC Grand Finals [8].

2 BACKGROUND AND RELATED WORK

This section introduces the key concepts related to automated test-

ing of REST APIs, test oracle generation, and Daikon.

2.1 Automated Testing of REST APIs

Modernweb APIs are typically compliant with the REpresentational

State Transfer (REST) [32] architectural style, being known as REST

APIs [68]. REST APIs are usually composed of multiple RESTful

web services, with each one of them implementing one or more

create, read, update, and delete (CRUD) operations on a resource

(e.g., a repository in the GitHub API [36]). These operations are

typically invoked by sending HTTP requests to speci�c Uniform

Resource Identi�ers (URIs) representing a resource or a collection

of resources.

REST APIs are commonly described using the OpenAPI Speci�-

cation (OAS) [2] format, arguably the industry standard. An OAS

document describes the API in terms of the operations supported,

as well as their input parameters and responses. As an example, List-

ing 1 depicts an excerpt of the OAS speci�cation of the “getAlbum-

Tracks” operation of the Spotify API [4]. The document describes

the HTTP method and the URI required to call the API operation

(lines 1-3), operation ID (line 4), input parameters (lines 5-20), and

possible responses (lines 21-61). Listing 2 depicts a response for the

“getAlbumTracks” operation conforming to the speci�cation.

The majority of approaches for automated testing of REST APIs

adopt a black-box approach [12, 15, 16, 26, 38, 39, 44, 50, 53, 54, 58,

71, 75, 78]. Given an OAS document, these techniques automatically

generate pseudo-random test cases (sequences of HTTP requests)

and test oracles (assertions on the HTTP responses). Approaches

mainly di�er in the way they generate API calls (i.e., test inputs)

using techniques such as model-based testing [53, 58, 76], property-

based testing [44, 50, 69, 71], and constraint-based testing [56, 57],

among others. Some methods focus on testing individual API oper-

ations and generate single API requests, while others also generate

sequences of API calls for stateful testing [15, 26, 44, 75]. White-

box approaches require access to the API source code and are far

less common than black-box approaches. Most existing techniques

leverage search algorithms to maximize fault detection and code

coverage [14, 72, 83].

In terms of fault detection, generated test oracles are primarily

limited to detecting API crashes (e.g., 500 status codes) and viola-

tions of the API speci�cation [14, 44, 50, 57, 75]. Other test oracles

focus on detecting regressions [35, 39] or adherence to best de-

sign practices [16, 18, 26, 74, 82]. However, all these approaches

have limitations in detecting issues that go beyond mere syntax.

For example, existing approaches would ignore domain-speci�c

1019

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1 paths:
2 '/albums/{id}/tracks':
3 get:
4 operationId: 'getAlbumTracks'
5 parameters:
6 - name: id
7 description: 'The Spotify ID for the album'
8 in: path
9 required: true
10 type: string
11 - name: market
12 description: 'An ISO 3166-1 alpha-2 country code'
13 in: query
14 required: false
15 type: string
16 - name: limit
17 description: 'The maximum number of items to return'
18 in: query
19 required: false
20 type: integer
21 responses:
22 '200':
23 description: 'OK'
24 schema:
25 type: object
26 properties:
27 total:
28 type: integer
29 href:
30 type: string
31 items: # Array of objects
32 type: array
33 items:
34 type: object
35 properties:
36 artists: # Array of objects
37 type: array
38 items:
39 type: object
40 properties:
41 id:
42 type: string
43 name:
44 type: string
45 available_markets: # Array of strings
46 type: array
47 items:
48 type: string
49 id:
50 type: string
51 name:
52 type: string
53 explicit:
54 type: boolean
55 linked_from: # Nested object
56 type: object
57 properties:
58 id:
59 type: string
60 uri:
61 type: string

Listing 1: OAS excerpt of the Spotify API.

1 {
2 "total": 14,
3 "href": "https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks
4 ?limit=1&market=ES",
5 "items": [
6 {
7 "artists": [
8 {
9 "id": "2CvCyf1gEVhI0mX6aFXmVI",
10 "name": "Paul Simon"
11 },
12 {
13 "id": "70cRZdQywnSFp9pnc2WTCE",
14 "name": "Arthur Garfunkel"
15 }
16],
17 "available_markets": ["ES", "US", "JP"],
18 "id": "0gFvkiT2afIcJwNxXQ7W51",
19 "name": "Mrs. Robinson",
20 "explicit": false,
21 "linked_from": {
22 "id": "98cZPdKywnMGp8fnw2XTYU",
23 "uri": "https://spotify.com/artist/98cZPdKywnMGp8fnw2XTYU"
24 }
25 }
26]
27 }

Listing 2: Spotify API response in JSON format.

assertions in Listing 2, such as checking that the linked_from.uri

response �eld should be a valid URL that contains the value of the

linked_from.id �eld, or that the size of the items response �eld

should be lower or equal than the value of the total response �eld,

among others. Generating such test oracles is the goal of AGORA.

2.2 Test Oracle Generation

Automated test case generation techniques can be classi�ed based

on their inputs, and their application domains. Regarding their

inputs, test oracles have been derived from source code [28, 60,

77, 80], formal speci�cations [34, 47], semi-structured documenta-

tion [20, 21, 40, 81], previous program executions [23, 24, 46, 49, 61–

63, 73], or a combination of them. Application domains include Java

projects [20, 28, 61], machine learning programs [22] and cyber-

physical systems [17], among others.

Other related techniques include metamorphic testing and re-

gression testing. Metamorphic testing [70, 71] relies on the man-

ual identi�cation of metamorphic relations among the inputs and

outputs of two or more executions of the program under test. Re-

gression testing [33, 79] relies on previous versions of the software

under test to con�rm that a change has not adversely a�ected

existing features.

A common approach for the generation of test oracles is through

the detection of likely invariants. An invariant is a property

that is always satis�ed at one or more points of the execution

of a program [30]. For example, given a Java function that re-

ceives an array and returns the same array with an additional

element, an invariant could specify that the returned array al-

ways has a greater size than the array provided as input, i.e.,

size(return.array[])>size(input.array[]). Invariants can

serve as test oracles to determine the correctness of a program

output. Invariants can be detected either statically (analyzing

the source code, without executing it) [27, 37] or dynamically

(analyzing the behavior of a program through multiple execu-

tions) [30, 31, 43, 52]. Statically detected invariants are usually

less numerous and less speci�c than those detected by dynamic

techniques [29, 64, 65]. However, dynamic invariant detection tech-

niques may result in a greater number of false positives, especially

if the executions of the program under analysis lack variety. Since

it is infeasible to run the program with all possible inputs, dynami-

cally detected invariants are referred to as likely invariants, until

they are con�rmed by a domain expert.

The automated detection of likely invariants has shown promis-

ing results in contexts such as Java programs [61], relational

databases [25], automated program repair [84], WS-BPEL composi-

tion testing [66], cyber-physical systems [10] or Cloud-based [67]

and distributed [42] systems. To the best of our knowledge, this is

the �rst approach for the automated detection of likely invariants

in REST APIs.

2.3 Daikon

Daikon [31] is an open-source tool that detects likely invariants in

programs by monitoring test executions. This monitoring process

involves observing the program state at designated program points,

initially considering all possible invariants as valid. Those invari-

ants that are not violated by any execution are reported as likely

invariants. Daikon operates by analyzing an instrumented version

of a software execution, generated by an instrumenter or front-end.

This instrumentation produces a declaration �le and a data trace

�le. The declaration �le describes the structure of program points in

terms of input and output variables. The data trace �le contains the

values assigned to the variables in each execution. Instrumenters

1020

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

1 public Result computeSquare(int inputValue) {
2 return new Result(inputValue*inputValue);
3 }

Listing 3: Java computeSquare function.

1 ppt main.computeSquare(int):::EXIT1
2 ppt-type subexit
3 variable inputValue
4 var-kind variable
5 dec-type int
6 rep-type int
7 variable return
8 var-kind return
9 dec-type Result
10 rep-type hashcode
11 variable return.square
12 var-kind field square
13 enclosing-var return
14 dec-type int
15 rep-type int

Listing 4: Daikon declaration �le.

1 main.computeSquare(int):::EXIT16
2 inputValue
3 10
4 1
5 return
6 1458849419
7 1
8 return.square
9 100
10 1

Listing 5: Daikon dtrace �le.

1 === main.computeSquare(int):::EXIT
2 return.square >= 0
3 inputValue <= return.square

Listing 6: Likely invariants of computeSquare.

are available for various programming languages and data formats,

including Java, Perl, C++, and CSV [1].

Listing 3 shows a sample Java method for computing the square

of an input integer. For this method, a Daikon instrumenter should

generate an ENTER and an EXIT program point to analyze the

evolution in the program state. Listing 4 depicts the content of a

Daikon declaration �le for the EXIT program point. As illustrated,

the de�nition of the program point is followed by the declaration

of the variables representing the input and output parameters to

be observed. Each variable de�nition includes information about

its name, datatype in the original program (dec-type) and in the

data trace �le (rep-type), and whether the variable is a property of

another variable (enclosing-var), among others. In the example,

Listing 4 contains the int-type variable inputValue (input param-

eter), and the object-type variable return, containing the integer

property return.square (method output).

Listing 5 shows the data trace �le of one execution of the EXIT

program point. For each variable, the data trace contains its name,

the value observed in the program execution, and the modi�ed bit.

This bit speci�es whether a variable value has been assigned or

not. After processing these �les, assuming a larger data trace �le,

Daikon would return a set of invariants as the one presented in

Listing 6.

3 AGORA

Figure 1 shows an overview of AGORA, our approach for the auto-

mated generation of test oracles for REST APIs. At the core of the

approach is Beet1, a novel Daikon instrumenter. Beet receives three

1Existing Daikon instrumenters have adopted the name of vegetables [1]. We decided
to follow this convention.

inputs: 1) the OAS speci�cation of the API under test, 2) a set of

API requests, and 3) the corresponding API responses. As a result,

Beet returns an instrumentation of the API requests consisting on a

declaration �le—describing the format of the API operations inputs

and outputs—and a data trace �le—specifying the values assigned

to each input parameter and response �eld in each API call. This

instrumentation is then processed by our customized version of

Daikon, resulting in a set of likely invariants that, once con�rmed

by developers, can be used as test oracles.

Beet

Declaration file

Data trace file

Modified version
of Daikon Likely invariants

API
requests + responses

(CSV)

{...}

OAS Specification

Figure 1: Work�ow of AGORA.

AGORA works at the operation level, that is, it learns invari-

ants from API requests testing individual API operations, as this is

the most basic and common testing practice [12, 50, 51, 56–59, 71].

Learning invariants for sequences of API calls (e.g., creating a re-

source, then updating it, then deleting it) could be implemented in

a similar way and remain for future work. Also, AGORA currently

supports JSON as the de facto standard data format. Supporting

other languages should be straightforward using existing convert-

ers, e.g., XML to JSON.

In the next subsections, we describe the Beet instrumenter and

the types of invariants currently supported by AGORA.

3.1 Beet: A Daikon Instrumenter for REST APIs

This subsection outlines the process followed by Beet to generate a

declaration and a data trace �le from an OAS speci�cation and a

set of API requests and responses.

3.1.1 Declarations. The declaration �les provide a description of

the inputs and outputs for each API operation. Table 1 summa-

rizes how these �les are generated from the information in the API

speci�cation. For each operation, an ENTER program point is cre-

ated, followed by the de�nition of input parameters, if any. These

input parameters are de�ned as a single input variable represent-

ing the whole input with as many properties as input parameters

(input.<paramName>). Similarly, an EXIT program point is cre-

ated for each operation, including an identical de�nition of the

input parameters, a return variable representing the whole out-

put, and as many properties of the return variable as response

�elds (return.<paramName>). The value of <primitiveType> in

Table 1 can be either java.lang.String, int, double or Boolean. Vari-

ables of type object are represented using hashcodes.

Two cases require special consideration: JSON objects and arrays

of objects. JSON objects are �attened and each property is treated

as a separate parameter. On the other hand, in Daikon, the elements

of an array of objects can only be speci�ed using their hashcode,

limiting the types of invariants that can be identi�ed to changes

in the array. To support more informative array-related output

invariants, Beet implements a recursive strategy by creating a new

1021

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 1: Mapping from OAS speci�cation to Daikon declaration �le.

A
P
I
o
p
er
at
io
n

ppt <operationName>&<statusCode>():::ENTER
ppt-type enter
variable input
var-kind variable
dec-type <operationName>&Input
rep-type hashcode

A
P
I
o
p
er
at
io
n ppt <operationName>&<statusCode>():::EXIT<exitNumber>

ppt-type subexit
variable input
-- Input variables --
variable return
var-kind return
dec-type <ppt-name>&Output&<statusCode>
rep-type hashcode

A
P
I
R
e
q
u
e
st

In
p
u
t
p
ar
am variable input.<parentVariable>.<paramName>

var-kind field <paramName>
enclosing-var input.<parentVariable>
dec-type <primitiveType> | <ppt-name>&Input&<paramName>
rep-type <primitiveType> | hashcode

A
P
I
R
e
sp

o
n
se

R
es
p
o
n
se

�
el
d

variable return.<parentVariable>.<fieldName>
var-kind field <fieldName>
enclosing-var return.<parentVariable>
dec-type <primitiveType> | <ppt-name>&Output&<fieldName>
rep-type <primitiveType> | hashcode

In
p
u
t
ar
ra
y

variable input.<parentVariable>.<paramName>
var-kind field <paramName>
enclosing-var input.<parentVariable>
dec-type <primitiveType>[] | <paramName>[]
rep-type hashcode

variable input.<parentVariable>.<paramName>[..]
var-kind array
enclosing-var input.<parentVariable>.<paramName>
array 1
dec-type <primitiveType>[] | <paramName>[]
rep-type <primitiveType>[] | hashcode[]

R
es
p
o
n
se

ar
ra
y

variable return.<parentVariable>.<fieldName>
var-kind field <fieldName>
enclosing-var return.<parentVariable>
dec-type <primitiveType>[] | <fieldName>[]
rep-type hashcode

variable return.<parentVariable>.<fieldName>[..]
var-kind array
enclosing-var return.<parentVariable>.<fieldName>
array 1
dec-type <primitiveType>[] | <fieldName>[]
rep-type <primitiveType>[] | hashcode[]

1 ppt getAlbumTracks&200():::ENTER
2 ppt-type enter
3 variable input
4 var-kind variable
5 dec-type getAlbumTracks&Input
6 rep-type hashcode
7 variable input.id
8 var-kind field id
9 enclosing-var input
10 dec-type java.lang.String
11 rep-type java.lang.String
12 variable input.market
13 var-kind field market
14 enclosing-var input
15 dec-type java.lang.String
16 rep-type java.lang.String
17 variable input.limit
18 var-kind field limit
19 enclosing-var input
20 dec-type int
21 rep-type int

Listing 7: ENTER program point of an API operation.

1 ppt getAlbumTracks&200():::EXIT1
2 ppt-type subexit
3 variable input
4 ...
5 variable return
6 var-kind return
7 dec-type getAlbumTracks&Output&200
8 rep-type hashcode
9 variable return.total
10 var-kind field total
11 enclosing-var return
12 dec-type int
13 rep-type int
14 variable return.href
15 var-kind field href
16 enclosing-var return
17 dec-type java.lang.String
18 rep-type java.lang.String
19 variable return.items
20 var-kind field items
21 enclosing-var return
22 dec-type items[]
23 rep-type hashcode
24 variable return.items[..]
25 var-kind array
26 enclosing-var return.items
27 array 1
28 dec-type items[]
29 rep-type hashcode[]

Listing 8: EXIT program point of an API operation.

EXIT2 program point (that we de�ne as a new nesting level) for

each distinct array element, describing its properties as independent

response �elds.

As an example, Listings 7 and 8 present the declarations of the

ENTER and EXIT points for the “getAlbumTracks” operation of the

Spotify API (Listing 1). In Listing 7, the de�nition of the ENTER

program point is followed by the de�nition of the input parameters.

2ENTER and EXIT program points must be de�ned in pairs in Daikon. Each EXIT
program point is paired with a renamed copy of the ENTER program point.

1 ppt getAlbumTracks&200&items():::EXIT2
2 ppt-type subexit
3 variable input
4 ...
5 variable return
6 ...
7 variable return.artists
8 ...
9 variable return.artists[..]
10 ...
11 variable return.available_markets
12 var-kind field available_markets
13 enclosing-var return
14 dec-type java.lang.String[]
15 rep-type hashcode
16 variable return.available_markets[..]
17 var-kind array
18 enclosing-var return.available_markets
19 array 1
20 dec-type java.lang.String[]
21 rep-type java.lang.String[]
22 variable return.id
23 ...
24 variable return.name
25 ...
26 variable return.track_number
27 ...
28 variable return.explicit
29 ...
30 variable return.linked_from
31 var-kind field linked_from
32 enclosing-var return
33 dec-type getAlbumTracks&Output&200&items&linked_from
34 rep-type hashcode
35 variable return.linked_from.id
36 var-kind field id
37 enclosing-var return.linked_from
38 dec-type java.lang.String
39 rep-type java.lang.String
40 variable return.linked_from.uri
41 ...

Listing 9: Second EXIT nesting level.

Speci�cally, an input variable representing the entire input, which

has three properties, each representing a distinct input parameter

(input.id, input.market and input.limit). Similarly, in List-

ing 8, the de�nition of the EXIT program point is followed by the

de�nition of the input parameters (omitted for brevity), a return

variable representing the entire output, and as many properties

of the return variable as response �elds (e.g., return.total and

return.href). The response includes an array of objects, items,

including the set of music albums matching the search criteria. This

is transformed into two distinct variables, one of type object (hash-

code) that represent the whole array (lines 19-23), and another of

type array containing the hashcodes of the array elements (lines

24-29). Besides this, an additional EXIT program point is created—a

new nesting level—de�ning the properties of each array item (i.e.,

Spotify album), as shown in Listing 9.

1022

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

1 getAlbumTracks&200():::ENTER
2 input
3 1242334637
4 1
5 input.id
6 "4Em5W5HgYEvhpc"
7 1
8 input.market
9 "ES"
10 1
11 input.limit
12 1
13 1

Listing 10: ENTER data trace �le.

1 getAlbumTracks&200():::EXIT1
2 input
3 ...
4 return
5 2043815652
6 1
7 return.total
8 14
9 1
10 return.href
11 "https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES"
12 1
13 return.items
14 1534143414
15 1
16 return.items[..]
17 [313805079]
18 1

Listing 11: EXIT data trace �le.

3.1.2 Data Traces. Data trace �les specify the actual input and

output values observed during the execution of the API. The list

of variables in the data trace record must be identical to that in

the corresponding declaration. Listing 10 shows the data trace �le

corresponding to a request to the “getAlbumTracks” operation

of the Spotify API with input parameters id=“4Em5W5HgYEvhpc”,

market=“ES” and limit=1. Analogously, Listing 11 depicts the

main data trace �le of the corresponding response, containing,

among other properties, an array of objects. For each array item,

Beet generates a new pair of trace �les (i.e., an ENTER and an EXIT)

with the values of each object (i.e., Spotify Album), not included

for brevity.

Beet has been implemented in Java and is open-source. We re-

fer the reader to GitHub for a more exhaustive description of the

instrumentation process and additional examples [5].

3.2 Invariant De�nition

This section details the changes performed on Daikon for detection

of likely invariants in REST APIs. In order to identify classes of

invariants that could be used as e�ective test oracles, we resorted

to a benchmark of 40 APIs (702 operations) systematically collected

from the RapidAPI repository [3], recently used by previous authors

in the context of REST API testing [12]. Speci�cally, we studied

the input and output format of each operation trying to identify

common types of invariants in REST APIs.

We implemented 22 new types of invariants, suppressed 36 de-

fault Daikon invariants, and activated 9 invariants disabled by de-

fault in Daikon. The new API-speci�c invariants aim to detect

speci�c common string patterns such as URLs, dates, or length

constraints, among others. Suppressed invariants would most likely

provide irrelevant or misleading information in our context and

thus they were disabled, such as comparing the scalar value of

strings or linear relations between numerical variables. Finally, we

activated 9 invariants related to detecting subsets and supersets

1 === getAlbumTracks&200():::ENTER
2 LENGTH(input.id)==14
3 input.limit >= 1
4 LENGTH(input.market)==2
5 === getAlbumTracks&200():::EXIT
6 return.href is Url
7 input.limit >= size(return.items[])
8 return.total >= size(return.items[])
9 return.total >= 1
10 input.market is a substring of return.href
11 input.id is a substring of return.href
12 === getAlbumTracks&200&items():::ENTER
13 ...
14 === getAlbumTracks&200&items():::EXIT
15 size(return.artists[]) >= 1
16 All the elements of return.available_markets[] have LENGTH=2
17 input.market in return.available_markets[]
18 LENGTH(return.id)==22
19 LENGTH(return.linked_from.id)==22
20 return.linked_from.uri is Url
21 LENGTH(return.linked_from.uri)==54
22 return.linked_from.id is a substring of return.linked_from.uri
23 === getAlbumTracks&200&items&artists():::ENTER
24 ...
25 === getAlbumTracks&200&items&artists():::EXIT
26 LENGTH(return.id)==22

Listing 12: Detected invariants.

when comparing array variables (e.g., x[] is a subsequence of

y[]) and detecting substrings relations between string variables

(e.g., input.id is a substring of return.href). Overall, our

customized version of Daikon supports a total of 105 distinct types

of invariants for REST APIs, classi�ed into �ve categories:

• Arithmetic comparisons (48 invariants). Specify numeri-

cal bounds (e.g., size(return.artists[]) >= 1) and re-

lations between numerical �elds (e.g., input.limit >=

size(return.items[])).

• Array properties (23 invariants). Represent comparisons be-

tween arrays, such as subsets, supersets, or �elds that are al-

ways member of an array (e.g., return.hotel.hotelId in

input.hotelIds[]).

• Speci�c formats (22 invariants). Specify restrictions regarding

the expected format (e.g., return.href is Url) or length

(e.g., LENGTH(return.id)==22) of string �elds.

• Speci�c values (9 invariants). Restrict the possible val-

ues of �elds (e.g., return.visibility one of {"public",

"private"}).

• String comparisons (3 invariants). Specify relations be-

tween string �elds, such as equality (e.g., input.name

== return.name) or substrings (e.g., input.id is a

substring of return.href).

We refer the reader to the AGORA GitHub repository [5] for

a more detailed description of each type of invariant, including

examples. The set of invariants is not exhaustive and more types of

invariants could be considered in the future.

Listing 12 shows some of the likely invariants inferred by Daikon

for the “getAlbumTracks” operation of the Spotify API used as

running example.

4 EVALUATION

We aim to answer the following research questions:

RQ1: How e�ective is AGORA in generating test oracles? We aim

to measure the precision of AGORA in generating invariants that

result in valid test oracles (i.e., they properlymodel the expected API

behavior) using the default con�guration of Daikon as a baseline.

1023

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

RQ2: What is the impact of the size of the input dataset on the

precision of AGORA? The precision of the detected invariants usu-

ally depends on the quality and diversity of the input datasets (i.e.,

API requests and responses). Hence, we aim to study the impact of

dataset size on the e�ectiveness of AGORA.

RQ3: How e�ective are the generated test oracles in detecting fail-

ures? The �nal goal is generating test oracles that can be used during

testing to identify erroneous responses caused by faults. Thus, we

aim to investigate the e�ectiveness of the generated oracles for

detecting non-trivial failures in REST APIs.

4.1 Experimental Data

For our experiments, we resorted to a set of 11 operations from

7 industrial APIs (Table 2) tested by previous authors [12, 58, 59,

71]. The OAS speci�cation of the APIs were obtained from their

o�cial websites. For those APIs that do not provide access to the

o�cial speci�cation, we either generated them manually (OMDb

and Yelp) or used the version available in APIs.guru [13] (Spotify

and YouTube), modifying them according to the latest version of

the web docs. Some of the speci�cations were either incorrect

(parameters of type array de�ned as strings) or incomplete (missing

response �elds). We manually �xed those speci�cations to ensure

that Beet could process them.

For each operation, we automatically generated and executed

API calls using the RESTest [57] framework until obtaining 10K

valid API calls per operation (110K calls in total). According to

REST best practices [68], we consider an API response as valid if it

is labeled with a 2XX HTTP status code. The OMDb API does not

adhere to REST best practices, returning a 200 response containing

the error response �eld when the user provides invalid data. For

this API, we consider as valid those API responses that do not

contain this �eld.

Some of the search operations support �ltering parameters that

can be highly restrictive, resulting in a signi�cant number of re-

sponses containing zero results, which provide almost no informa-

tion about the API behavior. To avoid this, when generating the

API requests, we ensured that at least 90% of the responses contain

results.

The invariants detected by AGORA largely depend on the diver-

sity of the API requests provided as input. To foster such diversity,

we followed current practices and manually created a data dictio-

nary for each non-trivial input parameter based on the analysis

of the API speci�cation and the API documentation. For instance,

for the location parameter of the Yelp API, we created a list of

cities located in di�erent continents. Numerical values and dates

were con�gured using RESTest generators, that provide a random

value in a speci�ed range. Our replication package [7] contains

the RESTest con�guration �les and the data dictionaries used for

generating the test cases.

4.2 Experiment 1: Test Oracle Generation

In this experiment, we aim to answer RQ1 and RQ2 by evaluating

the e�ectiveness of AGORA in generating test oracles for the target

API operations.

4.2.1 Experimental Setup. For each API operation, we randomly

divided the set of automatically-generated requests (10K) into sub-

sets of 50, 100, 500, 1K and 10K requests. Then, we ran AGORA—

Beet instrumentation plus customized Daikon execution—using

each subset as input and computed precision by manually classify-

ing the inferred invariants as true or false positives. True positive

invariants describe properties of the output that should always

hold and therefore are valid test oracles. A false positive re�ects

a pattern that has been observed in all the API requests and re-

sponses provided as input but does not represent the expected

behavior of the API. For example, one of the likely invariants

inferred in Spotify states that the duration in milliseconds of a

song should always be greater than the number of artists in the

song: (return.duration_ms>size(return.artists[])). While

this may be true in most cases, it is clearly not the intended behavior

of the API, and therefore it is considered a false positive.

Daikon also detects invariants among input parameters (i.e.,

ENTER program points). While these invariants can o�er insights

into the API behavior, they are not used to calculate precision as

they do not provide information about the output. Labeling them

as true positives would result in in�ated results.

We could not �nd any comparable approach to be used as a base-

line. Therefore, we compared the e�ectiveness of AGORA against

the default version of Daikon in identifying likely invariants for

REST APIs. In both cases, our novel instrumenter, Beet, was used

to transform API speci�cations, requests, and responses into in-

puts for Daikon. Our preliminary experiments revealed that 13 of

Daikon default invariants resulted in a combinatorial explosion of

string comparisons and a high number of false positives. To make

the comparison feasible, we disabled these problematic invariants,

detailed in our supplementary material [7].

The experiment was performed on a laptop equipped with Intel

i7-11800H @2.30GHz, 32GB RAM, and 1TB SSD running Windows

11 and Java 8.

4.2.2 Experimental Results.

RQ1: E�ectiveness of the approach. Table 2 shows the results for

each API operation, set of API requests (50, 100, 500, 1K, 10K) and

approach (AGORA vs default Daikon). The columns labeled with

“I” present the number of likely invariants detected, whereas the

columns labeled with “P” present the total precision, that is, the

percentage of true positives, i.e., valid test oracles. Next, we analyze

the results obtained from the entire dataset of 10K requests (RQ1),

shown in the last two columns of the table. The results with di�erent

sizes of the input dataset (RQ2) are analyzed in the next section.

When learning from the whole dataset (10K API requests),

AGORA obtained a total precision of 81.2% (770 out of 948 invari-

ants are valid oracles), whereas the original con�guration of Daikon

achieved 51.4% (363 out of 706). AGORA outperformed the default

con�guration of Daikon in all the API operations. Precision ranged

between 50% in the Yelp API and 100% in the “createPlaylist” op-

eration of the Spotify API. The number of invariants reported per

operation oscillated between 7 in the “bySearch” operation of the

OMDb API and 198 in the “createOrganizationRepository” of the

GitHub API. We observed a correlation between the number of

response �elds and the number of reported invariants. This was

con�rmed by a correlation study with a Spearman coe�cient of

1024

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

0.9, indicating that the number of invariants tends to increase with

the response size.

The sunburst in Figure 2 shows a breakdown of the reported

invariant categories for each classi�cation: true positives or false

positives. The largest portion of false positives (75.8%) were found

in the arithmetic comparison category, followed by speci�c values

(18.5%), speci�c formats (2.8%) and string comparisons (2.8%), with

no false positives of the array properties category. It is noteworthy

that the precision of AGORA increases to 93.6% when suppressing

the invariants of the arithmetic comparison category.

Arithmetic

comparisons

14.2%

Array properties 0.3%

Specific

formats

0.5%

String

comparisons

0.5%

Specific

values

9.5%

Arithmetic

comparisons

15.4%

String

comparisons

23.9%

Specific formats

32.1%

Specific

values

3.5%

TP

81.2%

FP

18.8%

Figure 2: Breakdown by invariant categories.

False positives in the arithmetic comparison category typically

occur when comparing numerical �elds with values in di�erent

orders of magnitude, such as comparing the duration of a Spotify

song inmillisecondswith its number of artists. Inmany cases, it may

be di�cult to �nd a counterexample that refutes these invariants.

The remaining false positives are either invariants that report an

object as always null or invariants that limit a response �eld to

only a speci�c value or set of values, but the API supports more.

These false positives mainly occur when the API has not returned

all possible values for an enum �eld (e.g., if the GitHub repository

visibility is always "public"). These invariants indicate either a lack

of diversity in the test suite or bugs in the API (c.f., Section 5).

Beet took between 0.3 seconds (50 requests) and 49.9 seconds

(10K requests) to generate the instrumentation of the target API

operations. Daikon (customized and default version) took between

0.2 seconds (50 requests) and 15.6 seconds (10K request) to detect

the reported invariants. Overall, AGORA took around 1 minute to

generate the invariants using the complete dataset of 10K requests.

Response to RQ1

AGORA is e�ective in generating test oracles obtaining

a total precision of 81.2% when learning from 10K API

requests. This means an improvement of 29.8% over the

default con�guration of Daikon. The precision of AGORA

raises to 93.6% when suppressing the invariants in the

arithmetic comparison category, which are the cause of 3

out of every 4 false positives.

RQ2: Impact of the size of the input dataset. Figure 3 shows the

evolution of the precision of AGORA with respect to the number

of input API requests, as detailed in Table 2. The total precision

improved from 73.2% with 50 API requests (724 valid invariants,

i.e, test oracles), to 81.2% with the complete dataset (770 valid in-

variants). This means a drop in precision of just 8% when using the

smallest dataset (50 API requests) against the complete one (10K

API requests). As in the previous section, it is worth highlighting

that the precision of AGORA for the 50 API requests sets increases

to 87.6% when excluding arithmetic comparisons, where the largest

number of false positives was found. This means a precision dif-

ference of only 6% with respect to the precision achieved with the

complete dataset suppressing arithmetic comparisons (93.6%).

50 100 500 1K 10K
0

20

40

60

80

100

AmadeusHotel GitHub-createRepo GitHub-getRepos
Marvel OMDB-byIdTitle OMDB-bySearch
Spotify-playlist Spotify-albumTracks Spotify-artistAlbums
Yelp YouTube TOTAL

Number of requests

Pr
ec

is
io

n

Figure 3: Evolution of the precision of AGORA.

The test suites of 50 requests seem to o�er the best trade-o� be-

tween e�ectiveness and test generation and execution costs. When

comparing the smallest dataset with those with 100 requests or

more, there is no increment in the precision value for 2 out of 11

operations, and the increase is less than 10% in 7 of them. This is

explained by false positives, most of them arithmetic comparisons,

for which it is di�cult to �nd a response that rules them out.

Response to RQ2

The number of input API requests has a very limited impact

on the e�ectiveness of AGORA. A small and diverse set of

only 50 API requests su�ces to achieve a precision of 73.2%

(87.6% excluding arithmetic comparisons), minimizing the

e�ort required to generate and execute test cases.

4.3 Experiment 2: Failure Detection

This experiment aims to answer RQ3 by analyzing the e�ectiveness

of the test oracles generated by AGORA in detecting failures.

4.3.1 Experimental Setup. To address RQ3, we evaluated the e�ec-

tiveness of the generated test oracles in detecting failures (i.e., erro-

neous outputs) in the APIs under test. To this end, we systematically

1025

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Test oracle generation. I=“Number of likely invariants”, P=“Precision (% valid test oracles)”

50 API calls 100 API calls 500 API calls 1K API calls 10K API calls

Daikon AGORA Daikon AGORA Daikon AGORA Daikon AGORA Daikon AGORA
API - Operation

I P (%) I P (%) I P (%) I P (%) I P (%) I P (%) I P (%) I P (%) I P (%) I P (%)

AmadeusHotel-getMultiHotelO�ers 109 21.1 117 52.1 136 16.9 114 56.1 116 22.4 108 64.8 107 24.3 107 66.4 99 26.3 106 67.9

GitHub-createOrganizationRepository 82 95.1 198 98 82 95.1 198 98 80 96.2 198 98.5 80 96.2 198 98.5 80 96.2 198 98.5

GitHub-getOrganizationRepositories 45 40 150 84.7 40 45 147 88.4 39 46.2 149 87.9 39 46.2 150 88 38 47.4 148 89.2

Marvel-getComicById 178 29.8 115 47.8 194 28.9 127 46.5 178 33.7 119 52.1 167 35.9 106 58.5 140 45.7 96 65.6

OMDB-byIdOrTitle 7 57.1 16 93.8 7 57.1 16 93.8 7 57.1 16 93.8 8 50 17 88.2 7 57.1 16 93.8

OMDB-bySearch 4 100 5 100 7 57.1 7 71.4 5 80 6 83.3 5 80 6 83.3 6 83.3 7 85.7

Spotify-createPlaylist 22 100 41 100 22 100 41 100 22 100 41 100 22 100 41 100 22 100 41 100

Spotify-getAlbumTracks 46 45.7 68 85.3 45 46.7 67 86.6 42 50 66 87.9 42 50 66 87.9 41 53.7 66 89.4

Spotify-getArtistAlbums 53 43.4 55 81.8 49 49 52 88.5 35 68.6 50 92 32 75 50 92 31 83.9 52 92.3

Yelp-getBusinesses 60 28.3 30 40 55 30.9 33 36.4 46 37 25 48 45 37.8 23 52.2 41 39 22 50

YouTube-listVideos 228 31.6 194 57.2 227 32.2 199 56.3 218 35.8 191 62.3 225 36 200 61.5 201 41.3 196 65.3

TOTAL 834 40.2 989 73.2 864 39.4 1001 73.5 788 44.5 969 77.8 772 45.9 964 78.8 706 51.4 948 81.2

seeded errors in API responses using JSONMutator [6], an open-

source mutation tool that applies di�erent mutation operators on

JSON data, e.g., removing an array item. This approach di�ers from

traditional mutation testing, where faults are seeded in the source

code of the program under test. The motivation behind our strategy

is to assess the failure detection capabilities of the generated test

oracles on large-scale industrial APIs, for which source code is not

available. Although open-source APIs exist, they are generally less

complex compared to the APIs used in our study [51, 55]. Also, we

argue that this strategy—introducing errors in API responses—is

appropriate since our goal is assessing the e�ectiveness of the test

oracles, not the test inputs, which has already been thoroughly

investigated in previous studies.

For each API operation, we selected the test oracles derived from

the set of 50 test cases since, as revealed in our previous experi-

ment, this was the most cost-e�ective input dataset. Test oracles

were transformed into executable assertions in Java, 724 in total

(Table 3). Then, for each API operation, we randomly selected 1K

API responses from the set of 10K test cases generated by RESTest

meeting the following constraints: (1) they were not part of the

50-requests set used for detecting the invariants, (2) they contained

at least one result item (we cannot apply mutation operators on

empty arrays), and (3) they revealed no failures (c.f. Section 5).

We used JSONMutator to introduce a single error on each API

response simulating a failure. Then, we ran the assertions and

marked the failure as detected if at least one of the test assertions

(i.e., test oracles) was violated. We repeated this process 100 times

per operation to minimize the e�ect of randomness computing the

average percentage of failures detected. In total, the results are

based on 1.1M seeded errors: 11 operations x 1,000 API responses x

100 repetitions.

For our experiments, we con�gured JSONMutator to apply mu-

tation operators that resulted in syntactically valid mutants, i.e.,

conform to the API speci�cation. Syntactically invalid mutants (e.g.,

adding a new property to a JSON object) can be detected by existing

approaches and therefore are out of the scope of AGORA. Speci�-

cally, we enabled the mutation operators that consist of changing

Boolean, double, long and string values (e.g., adding or removing

characters) and altering array values (e.g., removing and disor-

dering elements), using a total of 12 mutation operators. All the

mutations resulted in a distinguishable change in the API response

Table 3: Failure Detection Ratio per API operation.

API - Operation Assertions (test oracles) FDR (%)

AmadeusHotel-getMultiHotelO�ers 61 60

GitHub-createOrganizationRepository 194 92.3

GitHub-getOrganizationRepositories 127 63.9

Marvel-getComicById 55 37

OMDB-byIdOrTitle 15 36.2

OMDB-bySearch 5 20.8

Spotify-createPlaylist 41 84.7

Spotify-getAlbumTracks 58 70.2

Spotify-getArtistAlbums 45 76.6

Yelp-getBusinesses 12 23.2

YouTube-listVideos 111 65.4

TOTAL 724 57.3

and therefore there were no equivalent mutants. We disabled the

mutation operators that produced mutants non-conformant with

the OAS speci�cation. Also, we disabled operators that converted

response �elds into null values, since null values are easily detected

as a violations of the nullable property of OAS. Our supplemen-

tary material contains a detailed list of all the mutation operators

applied [7].

4.3.2 Experimental Results. Table 3 shows the number of test as-

sertions (i.e., test oracles) and the percentage of detected failures

for each API operation. Overall, test oracles generated by AGORA

identi�ed 57.3% of the failures. This percentage ranged between

20.8% in the “bySearch” operation of the OMDb API and 92.3% in

the “createOrganizationRepository” of the GitHub API. One of the

main causes behind undetected errors was introducing changes

in unique string values (e.g., “title=Taxi Driver” -> “title=TaAxi

Driver”) for which inferring test oracles is challenging.

Response to RQ3

The test oracles generated by AGORA are e�ective in de-

tecting failures, catching 6 out of every 10 errors system-

atically seeded in API responses.

5 DETECTED FAULTS

The invariants detected by AGORA allowed us to detect bugs in

some of the APIs under test, showing the potential of the approach

as a testing technique on its own. Some of the invariants revealed

1026

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

inconsistent behavior, e.g., hotel rooms with zero beds. We also

found cases where a con�rmed invariant (i.e., test oracle) was dis-

carded when increasing the size of the input dataset, meaning that

a counterexample (i.e., failure) had been detected. Therefore, the

invariants reported by AGORA play a dual role in fault detection:

invalid invariants (which require manual inspection) reveal faults

observed during the invariant detection process, whereas violated

valid invariants (which can be automatically detected) indicate

faults observed in production. Overall, AGORA detected 11 domain-

speci�c bugs in 7 operations from 5 APIs with millions of users

worldwide, namely Amadeus, GitHub, Marvel, OMDb and YouTube.

Our supplementary material contains videos showing the replica-

tion process of these bugs, as well as anonymized screenshots of our

reports and the received responses [7]. Next, we detail the detected

bugs.

Amadeus Hotel. During our initial experiments, one of the de-

tected invariants in the Amadeus Hotel API led to the identi�-

cation of 55 hotel o�ers in which the o�ered room had zero beds

(return.room.typeEstimated.beds>=0). This bug has been con-

�rmed and �xed by Amadeus developers.

GitHub. In the “createOrganizationRepository” op-

eration, the violation of the con�rmed invariant

input.license_template==return.license.key revealed 15

test cases in which the repository is created with an incorrect

license. This bug has been con�rmed by the API providers. Also,

contrary to what is stated in the API speci�cation and the docu-

mentation, AGORA detected that the �eld template_directory

was never included in the responses of the “getOrganization-

Repositories” operation (return.template_repository==null).

Developers con�rmed the issue and updated the documentation of

GitHub accordingly.

Marvel. In the “getComicById” operation, AGORA detected +3.1K

comics with 0 pages (return.pageCount>=0), invalid date formats,

comics with an invalid Diamond code (violations of the invariant

LENGTH(return.diamondCode)==9), and invalid values for the

EAN code (violations of the invariant LENGTH(return.ean)==20).

For example, we found a case where the EAN code had the value

of the Diamond code. These reports have not been con�rmed yet.

OMDb. The type parameter of the OMDb API operations is used

to �lter the obtained results to one media type: “movie”, “series” or

“episode” (according to the documentation). However, one of the in-

variants (return.Type one of {"game","movie","series"})

revealed a new value for this parameter that was not speci�ed

in the documentation: “game”. Moreover, we detected that the op-

erations “byIdOrTitle” and “bySearch” do not support �ltering by

“episode”. These reports have not been con�rmed yet.

YouTube. When performing a search using the

regionCode input parameter, the returned videos must

be available in the provided region. However, a viola-

tion of the con�rmed invariant input.regionCode in

return.contentDetails.regionRestriction.allowed[],

led us to detect 81 cases in which the API returned videos that

were not available in the provided region. This error has been

con�rmed by YouTube developers.

6 THREATS TO VALIDITY

In this section, we discuss the potential validity threats that may

have in�uenced our work, and how these were mitigated.

Internal validity. Are there factors that might a�ect the results of

our evaluation? For our experiments, we used the OAS speci�cation

of the APIs under test. When possible, we resorted to the publicly

available API speci�cations. However, the speci�cations of the

OMDb and Yelp APIs were unavailable, so we generated them

manually based on an analysis of theweb documentation. Therefore,

it is possible that these speci�cations have errors and deviate from

the API documentation. To mitigate this threat, the speci�cations

�les were thoroughly reviewed by at least two authors.

The e�ectiveness of our approach largely depends on the diver-

sity of the input API requests and responses. To maximize input

diversity, we manually selected a set of varied test inputs for each

parameter based on an analysis of the documentation. This may be

considered a naive and conservative approach. Using more system-

atic or automated means (e.g., adaptive random testing [45]) could

probably yield even better results.

The classi�cation of the reported invariants as true positives

or false positives may be a�ected by human biases or errors. To

mitigate this threat, each invariant was checked by at least two

authors, analyzing the API documentation, or consulting the API

developers in case of discrepancy.

Finally, the division of the dataset into random subgroups may

have also a�ected the results. We did not apply multiple executions

of this experiment given the manual work required to classify the

invariants reported in each execution. To mitigate this threat, the

experiment was performed with 11 API operations belonging to

di�erent application domains.

External validity. To what extent can we generalize the �ndings of

our investigation? We evaluated AGORA on a set of 11 operations

from 7 di�erent APIs, and therefore our conclusions could not

generalize beyond that. To mitigate this threat, we evaluated the

approach with a set of popular industrial APIs of di�erent domains

and various sizes used in related papers.

The novel types of invariant proposed could not generalize be-

yond the selected APIs. To mitigate this threat, these invariants

were created based on an analysis of a systematically collected

dataset of realistic APIs belonging to di�erent domains [12]. We

remark, however, that this set of invariants is not intended to be

complete and new invariant types could be proposed in the future.

7 CONCLUSIONS AND FUTUREWORK

This paper introduces AGORA, a novel approach for generating test

oracles for REST APIs through the detection of likely invariants.

Invariants are detected by analyzing the API speci�cation and a set

of API requests with their corresponding responses. The approach

is implemented using Daikon, an open-source tool for dynamic

invariant detection. In particular, we propose Beet, a novel Daikon

instrumenter for REST APIs described using OAS, and a customized

version of Daikon supporting the detection of 105 distinct types of

invariants in REST APIs. Evaluation results on a set of 11 operations

from 7 industrial APIs show that AGORA can generate hundreds of

e�ective test oracles with just 50 requests in seconds. In addition,

1027

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

AGORA helped identify 11 faults in industrial APIs with millions

of users, contributing to �xes and documentation updates, demon-

strating its potential as a standalone testing technique. AGORA

operates in a black-box mode and can be easily integrated into

existing API testing tools supporting the OAS speci�cation format.

Future lines of work include the automated generation of asser-

tions from the reported invariants, and the deployment of AGORA

as a Web API to ease its integration into others applications.

DATA AVAILABILITY STATEMENT

We provide a supplementary material containing the source code of

the scripts and projects developed, the data generated in our exper-

iments, as well as instructions on how to reproduce our evaluation.

With these resources, we aim to provide a robust foundation for

replicating and validating our �ndings. The artifact can be down-

loaded at [7]:

https://doi.org/10.5281/zenodo.7970822

ACKNOWLEDGMENTS

This work has been partially supported by grants PID2021-

126227NB-C22 and PID2021-126227NB-C21, funded by MCIN/AEI

/10.13039/501100011033/FEDER, UE; and grant TED2021-131023B-

C21, funded byMCIN/AEI/10.13039/501100011033 and by European

Union “NextGenerationEU”/PRTR».

REFERENCES
[1] 2022. DAIKON instrumenters. https://plse.cs.washington.edu/daikon/download/

doc/daikon.html#Front-ends-_0028instrumentation_0029. Accessed September
2022.

[2] 2022. OpenAPI Speci�cation. https://www.openapis.org. Accessed September
2022.

[3] 2022. RapidAPI API directory. https://rapidapi.com/marketplace. Accessed
November 2022.

[4] 2022. Spotify Web API. https://developer.spotify.com/web-api/. accessed
September 2022.

[5] 2023. Beet repository. https://github.com/isa-group/Beet
[6] 2023. JSONMutator. https://github.com/isa-group/JSONmutator. Accessed

January 2023.
[7] 2023. Replication package. https://doi.org/10.5281/zenodo.7970822
[8] 2023. SRC Grand Finalists 2023. https://src.acm.org/grand-�nalists/2023
[9] 2023. Visa Developer Center. https://developer.visa.com. accessed January 2023.
[10] Afsoon Afzal, Claire Le Goues, and Christopher Steven Timperley. 2021. Mithra:

Anomaly Detection as an Oracle for Cyberphysical Systems. IEEE Transactions
on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3120680

[11] Juan C. Alonso. 2022. Automated Generation of Test Oracles for RESTful APIs. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
1808–1810. https://doi.org/10.1145/3540250.3559080

[12] Juan C. Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and
Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering (2022). https://doi.org/
10.1109/TSE.2022.3150618

[13] apisguru 2022. APIs.guru. https://apis.guru. accessed October 2022.
[14] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-

Master. ACM Transactions on Software Engineering and Methodology 28, 1 (2019),
1–37. https://doi.org/10.1145/3293455

[15] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API
Fuzzing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 748–758. https://doi.org/10.1109/ICSE.2019.00083

[16] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking
Security Properties of Cloud Services REST APIs. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Veri�cation (ICST). 387–397. https:
//doi.org/10.1109/ICST46399.2020.00046

[17] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, and
Maite Arratibel. 2021. Generating Metamorphic Relations for Cyber-Physical
Systems with Genetic Programming: An Industrial Case Study. In Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
1264–1274. https://doi.org/10.1145/3468264.3473920

[18] Efe Barlas, Xin Du, and James C. Davis. 2022. Exploiting Input Sanitization
for Regex Denial of Service. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 883–895. https://doi.org/10.1145/
3510003.3510047

[19] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[20] Arianna Blasi, Alberto Go�, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure speci�cations. In ISSTA 2018, Proceedings of the 2018 Inter-
national Symposium on Software Testing and Analysis. Amsterdam, Netherlands,
242–253.

[21] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Antonio
Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in
Javadoc comments for test automation. Journal of Systems and Software 181 (Nov.
2021), 111041:1–13.

[22] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning
programs. Journal of Systems and Software 164 (2020), 110542. https://doi.org/
10.1016/j.jss.2020.110542

[23] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2020. Human-In-The-
Loop Automatic Program Repair. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Veri�cation (ICST). 274–285. https://doi.org/10.
1109/ICST46399.2020.00036

[24] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting Static
Analysis Accuracy with Instrumented Test Executions. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1154–1165. https:
//doi.org/10.1145/3468264.3468626

[25] Jake Cobb, James A. Jones, Gregory M. Kapfhammer, and Mary Jean Harrold.
2011. Dynamic Invariant Detection for Relational Databases. In Proceedings of the
Ninth International Workshop on Dynamic Analysis (Toronto, Ontario, Canada)
(WODA ’11). Association for Computing Machinery, New York, NY, USA, 12–17.
https://doi.org/10.1145/2002951.2002955

[26] Davide Corradini, Michele Pasqua, and Mariano Ceccato. 2023. Automated
Black-box Testing of Mass Assignment Vulnerabilities in RESTful APIs. https:
//doi.org/10.48550/ARXIV.2301.01261

[27] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks.
Journal of Logic and Computation 2 (08 1992). https://doi.org/10.1093/logcom/2.
4.511

[28] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022.
TOGA: A Neural Method for Test Oracle Generation. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2130–2141.
https://doi.org/10.1145/3510003.3510141

[29] Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In
WODA 2003: Workshop on Dynamic Analysis. Portland, OR, USA, 24–27.

[30] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (Feb. 2001), 99–123.

[31] Michael D. Ernst, Je� H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69,
1 (2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015 Special issue on
Experimental Software and Toolkits.

[32] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph. D. Dissertation. University of California, Irvine.

[33] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291. https://doi.org/10.
1109/TSE.2012.14

[34] Gregory Gay, Sanjai Rayadurgam, and Mats P.E. Heimdahl. 2014. Improving the
Accuracy of Oracle Verdicts through Automated Model Steering. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software Engineering
(Vasteras, Sweden) (ASE ’14). Association for Computing Machinery, New York,
NY, USA, 527–538. https://doi.org/10.1145/2642937.2642989

[35] Luca Gazzola, Maayan Goldstein, Leonardo Mariani, Itai Segall, and Luca Ussi.
2020. Automatic Ex-Vivo Regression Testing of Microservices. In Proceedings of
the IEEE/ACM 1st International Conference on Automation of Software Test (Seoul,
Republic of Korea) (AST ’20). Association for Computing Machinery, New York,
NY, USA, 11–20. https://doi.org/10.1145/3387903.3389309

[36] github-api 2022. GitHub API. https://developer.github.com/v3/ accessed
September 2022.

1028

https://doi.org/10.5281/zenodo.7970822
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-_0028instrumentation_0029
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-_0028instrumentation_0029
https://www.openapis.org
https://rapidapi.com/marketplace
https://developer.spotify.com/web-api/
https://github.com/isa-group/Beet
https://github.com/isa-group/JSONmutator
https://doi.org/10.5281/zenodo.7970822
https://src.acm.org/grand-finalists/2023
https://developer.visa.com
https://doi.org/10.1109/TSE.2021.3120680
https://doi.org/10.1145/3540250.3559080
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/TSE.2022.3150618
https://apis.guru
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1109/ICST46399.2020.00036
https://doi.org/10.1109/ICST46399.2020.00036
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/2002951.2002955
https://doi.org/10.48550/ARXIV.2301.01261
https://doi.org/10.48550/ARXIV.2301.01261
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1145/2642937.2642989
https://doi.org/10.1145/3387903.3389309
https://developer.github.com/v3/

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés

[37] C. Giu�rida, L. Cavallaro, and A. S. Tanenbaum. 2013. Practical automated
vulnerability monitoring using program state invariants. In 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE Computer Society, Los Alamitos, CA, USA, 1–12. https://doi.org/10.1109/
DSN.2013.6575318

[38] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API Data Fuzzing. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 725–736. https://doi.org/10.1145/3368089.3409719

[39] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Di�erential
Regression Testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 312–323.
https://doi.org/10.1145/3395363.3397374

[40] Alberto Go�, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In ISSTA 2016, Proceedings
of the 2016 International Symposium on Software Testing and Analysis. Saarbrücken,
Genmany, 213–224.

[41] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2022. Testing RESTful
APIs: A Survey. https://doi.org/10.48550/ARXIV.2212.14604

[42] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and As-
serting Distributed System Invariants. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 1149–1159. https:
//doi.org/10.1145/3180155.3180199

[43] J. Haltermann and H. Wehrheim. 2022. Machine Learning Based Invariant Gen-
eration: A Framework and Reproducibility Study. In 2022 IEEE Conference on
Software Testing, Veri�cation and Validation (ICST). IEEE Computer Society, Los
Alamitos, CA, USA, 12–23. https://doi.org/10.1109/ICST53961.2022.00012

[44] Zac Hat�eld-Dodds and Dmitry Dygalo. 2021. Deriving Semantics-Aware Fuzzers
from Web API Schemas. arXiv preprint arXiv:2112.10328 (2021).

[45] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin Xia.
2021. A Survey on Adaptive Random Testing. IEEE Transactions on Software
Engineering 47, 10 (2021), 2052–2083. https://doi.org/10.1109/TSE.2019.2942921

[46] Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand.
2022. Perfect is the Enemy of Test Oracle. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 70–81. https://doi.org/10.1145/
3540250.3549086

[47] Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

[48] Daniel Jacobson, Greg Brail, and Dan Woods. 2011. APIs: A Strategy Guide.
O’Reilly Media, Inc.

[49] Charaka Geethal Kapugama, Van-Thuan Pham, Aldeida Aleti, and Marcel Böhme.
2022. Human-in-the-LoopOracle Learning for Semantic Bugs in String Processing
Programs. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for
Computing Machinery, New York, NY, USA, 215–226. https://doi.org/10.1145/
3533767.3534406

[50] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST:
Property-based Test Generation of OpenAPI Described RESTful APIs. In Interna-
tional Conference on Software Testing, Validation and Veri�cation. 131–141.

[51] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated
Test Generation for REST APIs: No Time to Rest Yet. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY,
USA, 289–301. https://doi.org/10.1145/3533767.3534401

[52] Sumit Lahiri and Subhajit Roy. 2022. Almost Correct Invariants: Synthesizing
Inductive Invariants by Fuzzing Proofs. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for ComputingMachinery, New York, NY, USA, 352–364.
https://doi.org/10.1145/3533767.3534381

[53] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan
Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-Based RESTful API Testing
with Execution Feedback. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 1406–1417. https://doi.org/10.1145/
3510003.3510133

[54] R. Mahmood, J. Pennington, D. Tsang, T. Tran, and A. Bogle. 2022. A Frame-
work for Automated API Fuzzing at Enterprise Scale. In 2022 IEEE Conference on
Software Testing, Veri�cation and Validation (ICST). IEEE Computer Society, Los
Alamitos, CA, USA, 377–388. https://doi.org/10.1109/ICST53961.2022.00018

[55] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés.
2021. Black-Box and White-Box Test Case Generation for RESTful APIs: Enemies
or Allies?. In International Symposium on Software Reliability Engineering.

[56] Alberto Martin-Lopez, Sergio Segura, Carlos Müller, and Antonio Ruiz-Cortés.
2021. Speci�cation and Automated Analysis of Inter-Parameter Dependencies in

Web APIs. IEEE Transactions on Services Computing (2021). https://doi.org/10.
1109/TSC.2021.3050610

[57] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest:
Black-Box Constraint-Based Testing of RESTful Web APIs. In International Con-
ference on Service-Oriented Computing. 459–475.

[58] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
Automated Black-Box Testing of RESTful Web APIs. In International Symposium
on Software Testing and Analysis.

[59] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2022. Online
Testing of RESTful APIs: Promises and Challenges. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 408–420. https:
//doi.org/10.1145/3540250.3549144

[60] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 336–347. https://doi.org/10.1109/ICSE43902.2021.
00041

[61] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. 2022. Fuzzing Class
Speci�cations. In Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 1008–1020. https://doi.org/10.1145/3510003.
3510120

[62] Facundo Molina, Renzo Degiovanni, Pablo Ponzio, Germán Regis, Nazareno
Aguirre, and Marcelo Frias. 2019. Training Binary Classi�ers as Data Struc-
ture Invariants. In Proceedings of the 41st International Conference on Soft-
ware Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 759–770.
https://doi.org/10.1109/ICSE.2019.00084

[63] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. 2021.
EvoSpex: An Evolutionary Algorithm for Learning Postconditions. In Proceedings
of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE
’21). IEEE Press, 1223–1235. https://doi.org/10.1109/ICSE43902.2021.00112

[64] Jeremy W. Nimmer and Michael D. Ernst. 2001. Static veri�cation of dynami-
cally detected program invariants: Integrating Daikon and ESC/Java. In RV 2001:
Proceedings of the First Workshop on Runtime Veri�cation. Paris, France.

[65] JeremyW. Nimmer and Michael D. Ernst. 2002. Automatic generation of program
speci�cations. In ISSTA 2002, Proceedings of the 2002 International Symposium on
Software Testing and Analysis. Rome, Italy, 232–242.

[66] Manuel Palomo-Duarte, Antonio García-Domínguez, Inmaculada Medina-Bulo,
Alejandro Alvarez-Ayllón, and Javier Santacruz. 2010. Takuan: A Tool for WS-
BPEL Composition Testing Using Dynamic Invariant Generation. In Web En-
gineering, Boualem Benatallah, Fabio Casati, Gerti Kappel, and Gustavo Rossi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 531–534.

[67] Antonio Pecchia, Stefano Russo, and Santonu Sarkar. 2020. Assessing Invariant
Mining Techniques for Cloud-Based Utility Computing Systems. IEEE Transac-
tions on Services Computing 13, 1 (2020), 44–58. https://doi.org/10.1109/TSC.2017.
2679715

[68] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly Media, Inc.

[69] Sergio Segura, Juan C. Alonso, Alberto Martin-Lopez, Amador Durán, Javier
Troya, and Antonio Ruiz-Cortés. 2022. Automated Generation of Metamorphic
Relations for Query-Based Systems. In 2022 IEEE/ACM 7th International Workshop
on Metamorphic Testing (MET). 48–55. https://doi.org/10.1145/3524846.3527338

[70] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824. https://doi.org/10.1109/TSE.2016.2532875

[71] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-
morphic Testing of RESTful Web APIs. IEEE Transactions on Software Engineering
44, 11 (2018), 1083–1099. https://doi.org/10.1109/TSE.2017.2764464

[72] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2022. Im-
proving Test Case Generation for REST APIs through Hierarchical Clustering.
In Proceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering (Melbourne, Australia) (ASE ’21). IEEE Press, 117–128.
https://doi.org/10.1109/ASE51524.2021.9678586

[73] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020.
Evolutionary Improvement of Assertion Oracles. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 1178–1189. https:
//doi.org/10.1145/3368089.3409758

[74] Theofanis Vassiliou-Gioles. 2020. A simple, lightweight framework for testing
RESTful services with TTCN-3. In 2020 IEEE 20th International Conference on
Software Quality, Reliability and Security Companion (QRS-C). 498–505. https:
//doi.org/10.1109/QRS-C51114.2020.00089

[75] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RestTestGen:
Automated Black-Box Testing of RESTful APIs. In International Conference on

1029

https://doi.org/10.1109/DSN.2013.6575318
https://doi.org/10.1109/DSN.2013.6575318
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3395363.3397374
https://doi.org/10.48550/ARXIV.2212.14604
https://doi.org/10.1145/3180155.3180199
https://doi.org/10.1145/3180155.3180199
https://doi.org/10.1109/ICST53961.2022.00012
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/3533767.3534406
https://doi.org/10.1145/3533767.3534406
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534381
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1109/ICST53961.2022.00018
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.1145/3540250.3549144
https://doi.org/10.1145/3540250.3549144
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/TSC.2017.2679715
https://doi.org/10.1109/TSC.2017.2679715
https://doi.org/10.1145/3524846.3527338
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/TSE.2017.2764464
https://doi.org/10.1109/ASE51524.2021.9678586
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1109/QRS-C51114.2020.00089
https://doi.org/10.1109/QRS-C51114.2020.00089

AGORA: Automated Generation of Test Oracles for REST APIs ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Software Testing, Veri�cation and Validation.
[76] Henry Vu, Tobias Fertig, and Peter Braun. 2018. Veri�cation of Hypermedia

Characteristic of RESTful Finite-State Machines. In Companion Proceedings of the
The Web Conference 2018 (Lyon, France) (WWW ’18). International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,
1881–1886. https://doi.org/10.1145/3184558.3191656

[77] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On Learning Meaningful Assert Statements for Unit Test Cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 1398–1409. https://doi.org/10.1145/3377811.3380429

[78] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial
Testing of RESTful APIs. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 426–437. https://doi.org/10.1145/
3510003.3510151

[79] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (mar 2012), 67–120. https:
//doi.org/10.1002/stv.430

[80] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li,
and Qianxiang Wang. 2022. Automated Assertion Generation via Informa-
tion Retrieval and Its Integration with Deep Learning. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 163–174.
https://doi.org/10.1145/3510003.3510149

[81] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural
Language Comments to Formal Program Speci�cations. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Virtual Event, USA) (ES-
EC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 25–37.
https://doi.org/10.1145/3368089.3409716

[82] Man Zhang and Andrea Arcuri. 2021. Adaptive Hypermutation for Search-Based
System Test Generation: A Study on REST APIs with EvoMaster. ACM Trans.
Softw. Eng. Methodol. 31, 1, Article 2 (sep 2021), 52 pages. https://doi.org/10.1145/
3464940

[83] M. Zhang, A. Belhadi, and A. Arcuri. 2022. JavaScript Instrumentation for Search-
Based Software Testing: A Study with RESTful APIs. In 2022 IEEE Conference on
Software Testing, Veri�cation and Validation (ICST). IEEE Computer Society, Los
Alamitos, CA, USA, 105–115. https://doi.org/10.1109/ICST53961.2022.00022

[84] Yuntong Zhang, Xiang Gao, Gregory J. Duck, and Abhik Roychoudhury. 2022.
Program Vulnerability Repair via Inductive Inference. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY,
USA, 691–702. https://doi.org/10.1145/3533767.3534387

Received 2023-02-16; accepted 2023-05-03

1030

https://doi.org/10.1145/3184558.3191656
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1002/stv.430
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/3510003.3510149
https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3464940
https://doi.org/10.1145/3464940
https://doi.org/10.1109/ICST53961.2022.00022
https://doi.org/10.1145/3533767.3534387

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Automated Testing of REST APIs
	2.2 Test Oracle Generation
	2.3 Daikon

	3 AGORA
	3.1 Beet: A Daikon Instrumenter for REST APIs
	3.2 Invariant Definition

	4 Evaluation
	4.1 Experimental Data
	4.2 Experiment 1: Test Oracle Generation
	4.3 Experiment 2: Failure Detection

	5 Detected faults
	6 Threats to validity
	7 Conclusions and future Work
	References

