
SATORI: Static Test Oracle Generation
for REST APIs

Juan C. Alonso
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

javalenzuela@us.es

Alberto Martin-Lopez
SEART @ Software Institute

Università della Svizzera italiana
Lugano, Switzerland
alberto.martin@usi.ch

Sergio Segura
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

sergiosegura@us.es

Gabriele Bavota
SEART @ Software Institute

Università della Svizzera italiana
Lugano, Switzerland

gabriele.bavota@usi.ch

Antonio Ruiz-Cortés
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

aruiz@us.es

Abstract—REST API test case generation tools are evolving
rapidly, with growing capabilities for the automated generation
of complex tests. However, despite their strengths in test data
generation, these tools are constrained by the types of test oracles
they support, often limited to crashes, regressions, and non-
compliance with API specifications or design standards. This
paper introduces SATORI (Static API Test ORacle Inference),
a black-box approach for generating test oracles for REST APIs
by analyzing their OpenAPI Specification. SATORI uses large
language models to infer the expected behavior of an API by
analyzing the properties of the response fields of its operations,
such as their name and descriptions. To foster its adoption, we
extended the PostmanAssertify tool to automatically convert the
test oracles reported by SATORI into executable assertions. Eval-
uation results on 17 operations from 12 industrial APIs show that
SATORI can automatically generate up to hundreds of valid test
oracles per operation. SATORI achieved an F1-score of 74.3%,
outperforming the state-of-the-art dynamic approach AGORA+
(69.3%)—which requires executing the API—when generating
comparable oracle types. Moreover, our findings show that
static and dynamic oracle inference methods are complementary:
together, SATORI and AGORA+ found 90% of the oracles in our
annotated ground-truth dataset. Notably, SATORI uncovered 18
bugs in popular APIs (Amadeus Hotel, Deutschebahn, FDIC,
GitLab, Marvel, OMDb and Vimeo) leading to documentation
updates by the API maintainers.

Index Terms—REST APIs, test oracle, LLM, automated testing

I. INTRODUCTION

Web Application Programming Interfaces (APIs) allow het-
erogeneous software systems to communicate over the net-
work [1], [2]. Among these, REST APIs—those adhering
to the REpresentational State Transfer (REST) architectural
style [3]—have become the predominant standard. REST APIs
organize their functionality around distinct resources (e.g., a
video in the Vimeo API [4]) that clients access and manipulate
through HTTP interactions. REST APIs underpin the business
models of major companies such as Google, Microsoft, and
Uber [1]. The Postman 2024 State of the API Report [5] shows

that APIs are crucial business assets, with 62% of developers
working on revenue-generating APIs.

The importance of REST APIs has led to the development
of numerous techniques and tools for automated test case
generation for these systems [6], [7]. Most techniques follow
a black-box approach, deriving test cases automatically from
the OpenAPI Specification (OAS) [8] of the API under test.
These test cases are generated by assigning values to the input
parameters and validating the returned responses using various
test oracles [9], which serve as mechanisms for determining
whether the output of a program is correct for a given
input. Despite their promising results in generating valid API
requests, these tools are all limited by the types of failures
they can detect, primarily crashes (5XX HTTP status code
responses) [10]–[16], disconformities with the API specifi-
cation (e.g., an undocumented output JSON property) [11]–
[15], regressions [17], and violations of API best practices
(e.g., ensuring that repeated calls to idempotent operations
return identical responses) [18]. For example, given the API
specification of the “getBusinesses” operation of the Yelp
API shown in Listing 1, Listing 2 shows an API response
which conforms to such specification and would be considered
correct by existing tools. However, this response may still
contain errors that would go undetected by test case generators,
such as incorrect field length (e.g., country should have 2
characters), format (e.g., image_url should be a valid URL),
or violations of numerical constraints (e.g., latitude should
range from -90 to 90), among others. Recent surveys [6] and
tool comparisons [7], [19] highlight test oracle generation as a
key challenge in automated test case creation for REST APIs.
This is the problem that motivates our work.

To the best of our knowledge, the only existing approach
in the literature that addresses the automated generation of
test oracles for REST APIs is AGORA+ [20], [21], which
generates test oracles through the detection of likely invariants
(i.e., properties of the output that should always hold). Invari-

ants are detected by analyzing the API specification and a set
of API requests with their corresponding responses. Although
effective, the main limitation of AGORA+ is its reliance on a
sufficiently diverse test suite that thoroughly exercises the API
functionality to report accurate invariants. If the test suite lacks
diversity or contains faulty responses, the reported invariants
may be wrong or incomplete.

This paper presents SATORI (Static API Test ORacle Infer-
ence), a black-box static approach for automatically generating
test oracles for REST APIs by analyzing their OAS document,
without requiring prior API execution. SATORI leverages
large language models (LLMs) to infer test oracles from
the unstructured components of the OAS document, such as
response field names and descriptions, making it compatible
with existing API testing tools that support OAS. Currently,
SATORI supports a catalog of 17 types of test oracles, which
can be easily extended. To foster its adoption, we extended
the PostmanAssertify tool [21] to transform the test oracles
reported by SATORI into executable JavaScript assertions,
written using the Chai library [22], that are compatible with
Postman [23], a widely used API platform in industry with
over 40 million users.

The results of an evaluation conducted on 17 operations
from 12 industrial APIs show the capabilities of SATORI to
automatically generate up to hundreds of valid test oracles per
API operation, achieving an F1-Score of 74.3%, better than
AGORA+ (69.3%) in generating the same types of oracles
supported by both approaches. Moreover, SATORI identified
18 real bugs across 7 widely used industrial APIs (vs. 13
bugs in 7 APIs by AGORA+), which would have passed
unnoticed by existing test case generators. Our findings led
to documentation updates in the API of Vimeo. Since it does
not require prior API execution, SATORI offers a more cost-
effective solution than AGORA+. Our thorough evaluation
also shows that each approach excels in identifying distinct
oracle types, making them complementary: the combination
of SATORI and AGORA+ found 90% of the test oracles of
an annotated ground-truth dataset.

This paper makes the following research and engineering
contributions:

• SATORI, a black-box static approach for automatically
generating test oracles for REST APIs through specifica-
tion analysis.

• OKAMI, a dataset containing the annotated ground truth
of all the test oracles of the API operations used in
our evaluation (over 10.5k test oracles from more than
1.8k response fields), enabling benchmarking and future
comparisons. OKAMI is publicly available on Hugging
Face [24].

• An extension of PostmanAssertify [21] that transforms
the test oracles generated by SATORI into executable
JavaScript assertions compatible with the widely used
Postman API platform [23].

• An assessment of 21 LLMs as the backbone of SATORI,
compared in terms of size, coding and reasoning capabil-
ities, and cost.

1 paths:
2 ’/businesses/search’:
3 get:
4 operationId: getBusinesses
5 parameters:
6 - name: term
7 description: ’Search term, e.g. food or restaurants.’
8 in: query
9 schema:

10 type: string
11 - name: location
12 description: ’Geographic area for business search.’
13 in: query
14 schema:
15 type: string
16 responses:
17 ’200’:
18 description: ’Returns all businesses’
19 content:
20 application/json:
21 schema:
22 type: object
23 properties:
24 total:
25 type: integer
26 description: ’Total number of businesses found.’
27 businesses:
28 type: array
29 items:
30 type: object
31 properties:
32 id:
33 type: string
34 name:
35 type: string
36 image_url:
37 type: string
38 rating:
39 type: number
40 description: ’Business rating (ranges from 1... 5).’
41 coordinates:
42 type: object
43 properties:
44 latitude:
45 type: number
46 longitude:
47 type: number
48 price:
49 type: string
50 description: ’Price level. Value is
51 one of $, $$, $$$ and $$$$.’
52 example: ’$$’
53 location:
54 type: object
55 properties:
56 city:
57 type: string
58 country:
59 type: string
60 description: ’ISO 3166-1 alpha-2 country code.’

Listing 1: OAS excerpt of the Yelp API.

• An empirical evaluation of SATORI and AGORA+ in
terms of precision, recall, F1-Score and failure detection
across 17 operations from 12 industrial APIs, including
the discovery of 22 real-world bugs.

All our code and data are publicly available [25].

II. BACKGROUND AND RELATED WORK

A. Automated Testing of REST APIs

Web APIs commonly adhere to the REpresentational State
Transfer (REST) [3] architectural style, being known as REST
APIs [2]. REST APIs typically comprise multiple RESTful
web services, each implementing CRUD (create, read, update,
delete) operations on a resource (e.g., in the Vimeo API [4],
a resource is a video). These operations are usually invoked
by sending HTTP requests (generally GET, POST, PUT and
DELETE) to a Uniform Resource Identifier (URI) representing
a resource or a collection of resources.

REST APIs are commonly described using the OpenAPI
Specification (OAS) [8] format, arguably the industry standard.
An OAS document outlines the API operations, detailing their
input parameters and responses. For instance, Listing 1 shows
an excerpt from the OAS of the “getBusinesses” operation of
the Yelp API [26]. The specification defines the HTTP method
and URI required to call the operation (lines 1–3), operation

1 {
2 "total": 1,
3 "businesses": [
4 {
5 "id": "7dzGDH1BtzEjhZh1FeeaqA",
6 "name": "Caipirinha Corner",
7 "image_url": "https://s3-media1.fl.yelpcdn.com/bphoto/zrG.jpg",
8 "rating": 4.0,
9 "coordinates": {

10 "latitude": 37.3968404980258,
11 "longitude": -5.97877264022827
12 },
13 "price": "$",
14 "location": {
15 "city": "Seville",
16 "country": "ES"
17 }
18 }
19]
20 }

Listing 2: Yelp API response in JSON format.

ID (line 4), input parameters (lines 5–15), and response format
(lines 16–60). Listing 2 shows an API response aligning with
this specification.

Automated testing of REST APIs often employs a black-
box approach [10], [13]–[18], [27]–[38], where, based on
an OAS, these methods generate pseudo-random test cases
(sequences of HTTP requests) and test oracles (assertions
on the responses). Techniques vary in how they generate
API calls (i.e., test inputs), leveraging methods like property-
based testing [13], [15], [29], [39], model-based testing [27],
[31], and constraint-based testing [12], [38], [40]. Some ap-
proaches target individual API operations and create single
API requests, while others design sequences of API calls for
stateful testing [10], [14], [15], [34], [37], [38]. White-box
approaches, which require access to the API source code, are
less common, and most existing techniques use search algo-
rithms to maximize failure detection and code coverage [11],
[41]. Recent approaches for API testing leverage LLMs [35],
[38], [42], [43] and reinforcement learning [34], [37] to extract
realistic input values and dependencies between parameters
and operations, but none of them tackle the oracle problem.

Generated test oracles for failure detection primarily target
API crashes (e.g., 5XX status codes) and API specification vi-
olations [11]–[15], with some also addressing regressions [17]
and design practices [18]. However, these approaches are lim-
ited in identifying issues beyond syntax, overlooking domain-
specific assertions like those in Listing 2. For example, they
miss validations such as ensuring that the country response
field value has two characters, latitude and longitude fall
within specific ranges, or price adheres to allowed values
(“$”, “$$”, “$$$”, “$$$$”).

Some approaches infer input or output constraints in REST
APIs through static analysis [44], [45]. These constraints can
be considered as test oracles in the form of pre- and post-
conditions. However, these approaches require the source code
of the system, which may not always be available (as in the
case of the industrial APIs tested in our work) and thus cannot
operate in black-box mode. More importantly, they derive
constraints based on the implemented behavior, which may be
faulty, thus limiting the usefulness of the inferred constraints.

To the best of our knowledge, the only approach for infer-
ring domain-specific oracles for REST APIs is AGORA+ [20],
[21], which uses invariant detection to generate test oracles.
Invariants are output properties that should always hold (e.g.,

LENGTH(return.location.country)==2), and they are de-
tected by analyzing patterns in previous API executions
(i.e., request/response pairs). The effectiveness of AGORA+
depends on having a sufficiently diverse test suite: if the
suite lacks variety or includes faulty responses, the detected
invariants may be incomplete or invalid. However, many of
these oracles can be inferred directly from the response field
information in the OAS (e.g., response field names and de-
scriptions, as shown in Listing 1), without prior API execution.
This is the goal of SATORI.

B. Test Oracle Generation

Automated techniques for generating test oracles can be
categorized by their inputs and the domains they target.
Oracles can be derived from source code [46], [47], for-
mal specifications [48], semi-structured documentation [49],
previous program executions [50]–[54], or combinations of
these inputs. Application contexts include databases [54],
Java programs [50], cyber-physical systems [55], and machine
learning programs [56], among others.

Other related techniques include metamorphic testing, re-
gression testing and invariant detection. Metamorphic test-
ing [29], [33], [39], [57] uses manually identified relationships
between inputs and outputs across multiple executions of
the system under test. Regression testing [58] compares the
observed behavior to previous software versions to verify that
changes do not disrupt existing features. Invariant detection
identifies properties expected to consistently hold in program
outputs, which can serve as test oracles to verify the correct-
ness of outputs. They can be detected either statically, by
analyzing code (without executing it) [59], or dynamically,
by examining program behavior across executions [20], [21],
[50], [60].

In recent years, LLMs have been applied across various
stages of the software testing lifecycle [61], including unit
test case generation [62]–[65], test input generation [66], [67],
debugging [68], [69], and program repair [70]. LLM-based
techniques proposed for tackling the oracle problem [47],
[71]–[76] focus on specific programming languages and oper-
ate at the method level, leveraging information such as variable
names and dataflow analysis to infer test oracles, thus making
them unsuitable for the domain of REST APIs. To the best
of our knowledge, SATORI is the first approach to leverage
LLMs for addressing the oracle problem specifically in black-
box testing of REST APIs.

III. SATORI

Figure 1 outlines SATORI, our approach for automatically
generating test oracles for REST APIs through specification
analysis. Starting from an OAS, SATORI extracts the schema
of each response field of all the target operations and generates
prompts for a (configurable) LLM. The outputs of the LLM
(i.e., test oracles) are then processed into a machine-readable
format and, following an optional human verification step, are
provided to an extended version of PostmanAssertify [25] to
produce a Postman collection with executable test assertions.

Target
operations

OAS spec Information
extraction

Prompt
generation

Prompts

Pre-trained LLM

Process LLM
response

Test oraclesPostmanAssertifyPostman
collection

Response fields

Fig. 1: Workflow of SATORI.

We now describe the complete SATORI workflow in detail,
as well as the supported set of test oracles.

A. Automated Response Field Prompt Generation

This subsection explains how SATORI generates prompts to
infer test oracles for each response field of an API operation.

1) Information Extraction: First, we extract contextual in-
formation to generate input prompts. Specifically, we gather
details for each response field—such as name, description, and
examples—along with global context like the API name and
operation ID, providing the LLM with richer context to infer
accurate test oracles.

2) Prompt Generation: Using information from the previ-
ous step, SATORI generates one prompt per response field.
This prompt has been designed following well-established
prompting techniques and patterns [77], [78]. We use a System
prompt to set the overall behavior of the model and ensure
consistent outputs. Then, the main prompt begins by estab-
lishing context for the task, followed by the necessary infor-
mation, and then a detailed task description. Consequently,
each prompt is structured into three sections: Context prompt,
Properties prompt, and Oracles prompt. Our supplemental
material [25] contains all the prompts generated by SATORI
for our evaluation. In what follows, we provide an example
of each prompt section, highlighting in boldface the dynamic
parts of the prompt.

a) System Prompt: We use a role-playing approach,
instructing the model to act as an expert software engineer.

You are a highly skilled software engineer with extensive ex-
perience in designing and testing REST APIs. Answer to your
questions simply by generating a JSON object, without providing
any additional information or explanation.

b) Context Prompt: This provides the model with essen-
tial context, including the name of the API, the operation under
test, and the name and type of the target response field.

I am going to give you a response field of the getBusinesses
operation of the Yelp API. The name of this response field is
“price” and it is of type string.

c) Properties Prompt: This includes all additional prop-
erties of the response field available in the API specification,
such as descriptions or examples, which the LLM can analyze
to identify potential test oracles.

This response field has the following properties:
“name”: “price”
“type”: “string”
“description”: “Price level. Value is one of $, $$, $$$, $$$$.”
“example”: “$$”

d) Oracles Prompt: This final section guides the model
to generate test oracles for the response field and is structured
in three parts. First, the Task introduction prompt outlines
the task. Next, several Single oracle prompts are presented
as questions, guiding the model to infer specific test oracles
based on the datatype of the response field (Section III-C).
Each single oracle prompt consists of a question and specifies
the expected response as a JSON property name and datatype,
or a default JSON property value if no oracle is identified.
Finally, the Response format prompt instructs the model to
return the test oracles in a structured JSON.

Task introduction prompt
Given this information, I want you to answer the following
questions about some properties of this response field:
- -
Single oracle prompts (one example)

3 - Should this response field have a set of specific values?
JSON property:
“string_specific_values”, of type array of string, if there are no
specific values, the array is empty
- -
Response format prompt

I want the response to be a single JSON object with the properties
indicated in each question (string_is_url, string_is_numeric,
string_specific_values, string_is_email, string_is_date,
string_fixed_length, string_is_time). I don’t want any kind of
additional natural language explanation, only the JSON object.

B. LLM Response Processing

SATORI processes the responses of the LLM to ensure syn-
tactic correctness, handling issues like transforming responses
into valid JSON, standardizing formats, merging multiple
JSONs, and removing spurious text. Listing 3 shows the
response returned by SATORI for the price response field.

1 {
2 "string_is_url": false,
3 "string_is_numeric": false,
4 "string_specific_values": ["$", "$$", "$$$", "$$$$"],
5 "string_is_email": false,
6 "string_is_date": false,
7 "string_fixed_length": null,
8 "string_is_time": false
9 }

Listing 3: Example of test oracles generated by SATORI.

These test oracles, together with the OAS document, are
provided as input to our PostmanAssertify extension, which
transforms them into executable JavaScript assertions compat-
ible with Postman [23]. PostmanAssertify produces a Postman
collection of API requests for each tested operation, embed-
ding the test oracles in each request and thus making the
approach readily applicable in practice. For instance, the gen-
erated test cases could be executed programmatically, via the
Postman GUI, or integrated into CI/CD pipelines. An example
of a generated assertion is pm.expect(["$", "$$", "$$$",

"$$$$"].includes(price)).to.be.true, corresponding to
the price response field (line 4 of Listing 3).

C. Target Oracles

SATORI supports a set of 17 types of test oracles, shown
in Table I. Note that string, boolean and number oracles
can be applied to elements of arrays (fourth row of Ta-
ble I). These oracles support all 49 unary invariants (i.e.,
test oracles evaluating a single variable) supported by the
dynamic approach AGORA+ [20], [21], which were derived
from a systematic study of the oracles found in 40 real-world
APIs. We focus on unary oracles to make our evaluation
affordable, since deriving a ground-truth dataset of n-ary
oracles would lead to a combinatorial explosion, requiring
the manual annotation of a dataset of up to tens of thou-
sands of instances per API operation (see Section IV-A1).
Our proposed oracles are simpler than AGORA+’s while
supporting the same use cases. For instance, float and integer
invariants of AGORA+ (e.g., OneOfFloat and OneOfScalar)
are combined into a single SATORI test oracle (e.g.,
number_specific_values). The resulting oracles assess
properties such as string formats (e.g., string_is_url), nu-
merical boundaries (e.g., number_max_value), and ordering
of arrays (e.g., array_number_asc_order). We refer the
reader to the SATORI documentation [25] for a complete list
of the supported test oracles. These can be extended to support
specific requirements.

IV. EVALUATION

We aim to answer the following research questions:
RQ1: How do different LLMs perform in generating test

oracles with SATORI? We analyze the performance and cost
of different LLMs as the backbone of SATORI, considering
model size, code specialization and reasoning capabilities.

RQ2: What is the effectiveness of SATORI in generating
test oracles and how does it compare against dynamic oracle
generation approaches? We compare the oracle generation
capabilities of SATORI equipped with the LLM chosen in
the previous RQ with respect to AGORA+ as a representative
dynamic approach.

RQ3: How effective is SATORI in detecting artificially
seeded faults and how does it compare against dynamic
approaches? We evaluate the effectiveness of the oracles
generated by SATORI in detecting faults (mutations) in API
responses, comparing it against AGORA+.

RQ4: How effective is SATORI in detecting real faults? We
evaluate the ability of SATORI to detect real faults in API
responses, especially those not identified by AGORA+.

TABLE I: Test oracles supported by SATORI.
Datatype Test oracles
String is_url, is_numeric, specific_values, is_email,

is_date, fixed_length, is_time
Boolean always_true, always_false
Number min_value, max_value, specific_values
Array {String,Boolean,Number}-oracles, min_size, max_size,

specific_sizes
Array[number] {Array}-oracles, asc_order, desc_order

RQ5: How much does it cost to find a bug with SATORI?
Can this cost be saved? As GPT-4o is the most effective model
with SATORI, we compute the cost per bug found (in dollars)
and investigate whether free open-source models can find the
same bugs.

A. Experiment 1: Test Oracle Generation

With this experiment, we aim to answer RQ1 and RQ2
by measuring the performance achieved by SATORI with
different LLMs, and comparing it against dynamic oracle
generation approaches.

1) Experimental Setup: Next we describe the dataset used
as a benchmark, the LLMs and baselines experimented with,
and the metrics considered for evaluation.

a) Dataset: As a contribution of this work, we present
the OKAMI (Oracle Knowledge of API Methods for In-
novation) dataset [24], a reliable benchmark for evaluating
test oracle generation techniques for REST APIs. OKAMI is
composed of 17 operations from 12 industrial APIs, which
were used for the evaluation of the oracle generation approach
AGORA+ [20], [21], [79] and in previous papers [10], [19],
[28]. When necessary, we updated the OAS documents of
these APIs according to the latest version of the web docs. We
manually created the ground truth of all the oracles supported
by SATORI for all the response fields of these API operations
(e.g., labeling href response fields as URLs). Due to the
extremely costly effort of manually annotating thousands of
response fields, we randomly sampled API operations from
the AGORA+ benchmark until having annotated, at least, 10k
oracles. This resulted in a dataset of 17 API operations, 1,816
response fields and 10,645 test oracles. To avoid human bias or
errors during the labeling process, we carefully analyzed the
API specification (OAS) for labeling each response field and
consulted the API providers in case of doubts or discrepancies.
OKAMI is publicly available on Hugging Face [24] and as part
of our supplemental material [25] to serve as a benchmark for
future studies.

b) LLMs and Baselines: To answer RQ1, we selected
a set of 21 LLMs according to different criteria, namely:
(i) model size (from 1B parameters to hundreds of billions
of closed-source models), (ii) code specialization (explicitly
trained on code or not), and (iii) reasoning capabilities (ex-
plicitly trained to reason about their answers or not). We
selected models from six different vendors, i.e., Google, Meta,
Microsoft, Alibaba, DeepSeek and OpenAI. We aim to analyze
the impact of the aforementioned criteria on the performance
of SATORI, and to select the best model for the subsequent
experiments.

Regarding configuration parameters, we use the default set-
tings for all models and a temperature of 0 (greedy decoding),
thus making their outputs mostly deterministic.

To answer RQ2, we compare the performance of SATORI
against AGORA+, a dynamic approach that requires prior
API execution to infer test oracles. In particular, we consider
two versions of AGORA+: unary and binary. The unary
version, denoted as AGORA+U, reports the same test oracles

as SATORI (i.e., those involving a single variable), while
the binary version, denoted as AGORA+, generates also
test oracles involving two variables (e.g., input.limit >=
size(return.items[])).

The authors of AGORA+ explain the need for a sufficiently
diverse set of API requests and responses to detect invariants
effectively, with 50 being enough. For a fair evaluation, we
used the same sets of 10k requests used in the AGORA+
paper [21]. Since the performance of AGORA+ depends on
these (randomly generated) sets of request-response pairs, the
authors selected 10 subsets of 50 pairs each from among these
10k instances, and computed averages. We used the same 10
sets in this work.

c) Metrics: For both RQ1 and RQ2, we report the overall
precision, recall and F1-Score. Here precision refers to the
percentage of correct oracles generated by a technique Ti

out of the total number of oracles generated by Ti. Recall,
instead, captures the percentage of oracles in our ground truth
dataset that has been generated by Ti. For RQ2, we report
also the same metrics per oracle type (see 17 types of oracles
in Table I) for further analyses. For AGORA+ (binary), we
report only the overall precision, since the OKAMI dataset
contains only unary oracles. We also report the average time
(in seconds) required to generate the test oracles for each
response field of the API operations. The open-source LLMs
were executed on a single NVIDIA A100 GPU with 80GB
of VRAM, while OpenAI models were invoked via their web
API [80]. AGORA+ does not require GPU resources, therefore
it was executed on a desktop computer equipped with an Intel
i9-12900K @3.20GHz, 64GB RAM, and 2TB SSD running
Windows 11.

2) RQ1: Experimental Results: Figure 2 shows the preci-
sion, recall and F1-Score achieved by each model. The figure
is split in four subfigures according to the criteria previously
mentioned, i.e., size (2a), code specialization (2b), reasoning
capabilities (2c) and best model of each vendor considered
(2d). The numbers shown on top of markers denote the average
time (in seconds) to generate all possible oracles of a single
response field in the OAS.

As expected, model size plays a role, as confirmed in
Figure 2a. Here we evaluated four families featuring the same
model in different sizes, namely, Phi-4 (3.8B, 14.7B), Gemma
3 (1B, 12.2B, 27.4B), Qwen2.5 and Qwen2.5-Coder (1.5B,
14.8B, 32.8B). As observed, models under 4B parameters
exhibit significantly lower performance compared to the rest.
However, models between 12-15B parameters achieve perfor-
mance (69.3–71.6%) mostly on par with that achieved by
models with ∼30B parameters (70.4–72.2%). This may be
relevant if cutting costs is desirable (e.g., cheaper GPUs and
faster inference times).

To evaluate the impact of code specialization on the task of
oracle generation for REST APIs, we evaluated five models
which offer a base version and a code-specialized version (i.e.,
the same model further trained on code), namely, Gemma 1.1
(8.5B), DeepSeek-V2-Lite (15.7B) and Qwen2.5 (1.5B, 14.8B,
32.8B). As shown in Figure 2b, results are mixed. While code

specialization seems to help for Gemma, DeepSeek and Qwen
1.5B models (7.6% higher F1 on average), it has a slightly
negative impact on Qwen 14.8B (-3.9% F1) and no significant
impact on Qwen 32.8B. Execution times are not significantly
affected by code specialization.

Regarding reasoning capabilities, we evaluated three mod-
els which offer versions distilled from (i.e., fine-tuned with
the answers generated by) the reasoning model DeepSeek
R1 [81], namely, Llama 3.1 (8B) and Qwen2.5 (14.8B, 32.8B).
Figure 2c highlights two interesting aspects. First, reasoning
distillation does not significantly affect the overall F1-Score
of models, although it worsens precision and improves recall,
meaning that distilled models tend to generate more oracles,
resulting in more false positives (wrong oracles) but also less
false negatives (less correct oracles missed). On the other
hand, reasoning models are significantly slower than their non-
distilled counterparts, taking 6-7× longer to generate oracles.

Figure 2d shows the comparison between the best model
of each vendor and the closed source models GPT-4o
and o3-mini. The average F1-Score ranges from 53.7%
(DeepSeekCoder-V2-Lite) up to 74.3% (GPT-4o). The low
performance of DeepSeekCoder-V2-Lite for this task may be
attributed to the fact that is a Mixture of Experts (MOE) model
originally designed with over 200B parameters, thus its lite
version may not be able to unleash the full potential of the
MOE architecture.

Answer to RQ1: Comparison of LLMs

Models under 4B parameters exhibit significantly lower
performance (<55% F1-Score) compared to their larger
counterparts (∼70% F1-Score). Code specialization helps
in some cases, while reasoning distillation does not affect
the F1-Score, but increases execution times. Overall, the
best model for SATORI is GPT-4o (74.3% F1-Score, 1.96s
execution time).

3) RQ2: Experimental Results: Table II shows the perfor-
mance, in terms of precision (P), recall (R) and F1-Score (F1),
as well as true and false positives and negatives (TP, TN,
FP, FN) for each type of test oracle and overall achieved by
SATORI (equipped with GPT-4o) and AGORA+U. The table
combines oracles related to primitive and array datatypes (e.g.,
string_is_url and array_string_is_url are both consid-
ered string_is_url). The table does not show oracles not
found in the ground-truth dataset and for which no approach
generated false positives (i.e., array_number_desc_order).

The results show that AGORA+U achieved higher F1-Score
than SATORI for 9 out of 16 types of oracles, while SATORI
is better for the remaining 7. Even so, the overall F1-Score
of SATORI (74.3%) remains higher than that of AGORA+U
(69.3%). For the binary version of AGORA+, the precision of
AGORA+ is 68.8%, significantly lower than the precision of
both SATORI (81.2%) and AGORA+U (76.8%), meaning that
AGORA+ tends to generate significantly more false positives.

Figures 3a and 3b show the overlapping between SATORI

(a) Size. (b) Code specialization. (c) Reasoning capabilities. (d) Best model of each vendor.

Fig. 2: RQ1: Precision, recall and F1-Score of each model evaluated according to several criteria. Numbers above markers
denote average time (in seconds) to generate oracles for a single response field.

is_url (220)

fixed_length (210)

specific_values (201)

is_numeric (83)

is_time (80)

is_date (62)

is_email (7)

min_value (206)

max_value (82)

specific_values (54)

always_false (7)

always_true (7)

min_size (35)

max_size (25)

specific_sizes (22)

number_asc_order (2)

0

20

40

60

80

100

Both AGORA+u SATORI

R
ec

al
l
(%

)

(a) Per oracle type.

AmadeusHotel (98)

Deutschebahn (77)

DHL (23)

FDIC (200)

GitHub-createRepo (150)

GitHub-getRepos (84)

GitLab-projectBadges (6)

GitLab-projectJobs (76)

Marvel (79)

OMDB-byIdTitle (15)

OMDB-bySearch (6)

Spotify-playlist (34)

Spotify-albumTracks (32)

Spotify-artistAlbums (31)

Vimeo (198)

Yelp (20)

YouTube (174)

0

20

40

60

80

100

Both AGORA+u SATORI

R
ec

al
l
(%

)

(b) Per API operation.

Fig. 3: RQ2: Overlapping of recall (percentage of oracles detected) between SATORI and AGORA+U.

TABLE II: RQ2: Test oracle generation by SATORI and
AGORA+U, per oracle type and overall.

AGORA+U SATORI (GPT-4o)
Type & Oracle P R F1 TP TN FP FN P R F1 TP TN FP FN

St
ri

ng

is_url 99.9 80 88.9 176.1 803.8 0.2 43.9 94.3 98.6 96.4 217 791 13 3
fixed_length 81.9 83.6 82.7 173.9 777.4 38.6 34.1 59.6 28.6 38.7 59 778 40 147
specific_values 47.6 42.5 44.9 74.5 766.6 82 100.9 65.1 85 73.8 142 781 76 25
is_numeric 99.1 77.8 87.2 64.6 940.4 0.6 18.4 84.8 80.7 82.7 67 929 12 16
is_time 100 55 70.9 44 944 0 36 97.4 93.8 95.5 75 942 2 5
is_date 100 72.9 84.3 45.2 962 0 16.8 95.4 100 97.6 62 959 3 0
is_email 100 42.9 59 3 1017 0 4 100 100 100 7 1017 0 0

N
um

be
r min_value 81.4 43.6 56.7 82.5 23.7 18.9 106.9 82 91.9 86.6 159 24 35 14

max_value 66.2 44.2 52.9 34 137.5 17.5 43 90 44.4 59.5 36 147 4 45
specific_values 65.6 66.3 65.9 33.7 163.4 17.8 17.1 78.6 20.4 32.4 11 175 3 43

B
oo

l always_false 10.5 14.3 12 1 117.3 8.7 6 - 0 - 0 126 0 7
always_true 35.2 27.1 30.3 1.9 122.3 3.7 5.1 - 0 - 0 126 0 7

A
rr

ay

min_size 58.4 63.5 60.8 22.3 64.9 16 12.8 100 8.6 15.8 3 81 0 32
max_size 46.3 59.2 51.9 14.2 75.4 16.6 9.8 0 0 - 0 91 3 22
specific_sizes 47.8 77.1 59 16.2 77.2 17.8 4.8 0 0 - 0 94 3 19
number_asc_order 100 100 100 2 1 0 0 - 0 - 0 1 0 2

TOTAL 76.8 63.2 69.3 789.1 6993.9 238.4 459.6 81.2 68.4 74.3 838 7062 194 387

and AGORA+U in terms of oracles detected (recall), grouped
by oracle type and API operation, respectively. The numbers in
parentheses in each tag indicate the number of possible oracles
to be detected for each oracle type or API operation. Out of the
1167 oracles detected, 374 (32%) were identified exclusively
by SATORI, 329 (28.2%) only by AGORA+U, and 464
(39.8%) by both approaches. Looking at Figure 3a, we can see
that both approaches achieve similar performance in certain
oracles (e.g., string_is_numeric or number_max_value).
In these cases, SATORI is more cost-effective, as it only
requires access to the API specification, unlike AGORA+U,
which needs a diverse test suite to verify API behavior.

However, when looking at the performance differences, it is
clear that both approaches are complementary. For example,
SATORI can precisely infer enum values from descriptions
(string_specific_values) or detect domain-specific mini-
mum values (e.g., -90 for latitude). The correct inference
of these oracles for AGORA+U may be hard if the test suite
used as input is not diverse enough (e.g., it does not include
a request with a latitude value of -90). On the other hand,
there are some types of oracles that only AGORA+U detected.
This is explained by the fact that some oracles simply cannot
be inferred from the specification, since they may not be
explicitly stated in the OAS. Instead, they require the execution
of the API to find such patterns, for instance, detecting a
boolean field always being true (boolean_always_true) or
the maximum size of an array (array_max_size).

When analyzing the performance of SATORI and
AGORA+U per API operation (Figure 3b), the trend is similar
to the one observed in the previous analysis. Although the
overall recall of SATORI is higher than that of AGORA+U,
the latter detected more oracles in 10 out of 17 operations.
This obviously comes at the cost of (i) executing the API, and
(ii) being less precise, i.e., generating more false positives, as
illustrated in Table II.

Answer to RQ2: Static and dynamic test oracle generation
effectiveness

Overall, SATORI outperforms AGORA+U in terms of
precision, recall and F1-Score. However, their overlapping
in terms of generated oracles shows that both approaches
are complementary, and that SATORI can generate a sig-
nificant percentage of the test oracles without previously
executing the API.

B. Experiment 2: Artificial Fault Detection

This experiment aims to answer RQ3 by comparing the ef-
fectiveness of the oracles generated by SATORI and AGORA+
in detecting failures caused by artificially seeded faults.

1) Experimental Setup: Next, we describe the setup for this
experiment, detailing the techniques evaluated, the test oracles
implemented, the test case selection criteria, the mutant gen-
eration process and the metrics used to measure performance.

a) Techniques: We evaluated SATORI, AGORA+, and
their combination in detecting API failures caused by artificial
faults. We distinguish between the results of AGORA+U and
AGORA+ (i.e., leveraging also binary oracles). We also report
the failures that could be detected with all unary oracles of the
ground-truth dataset, i.e., an upper bound for both SATORI
and AGORA+U.

b) Test Oracles: For each API operation of Experi-
ment 1, we selected the valid test oracles generated by
each approach (i.e., confirmed as true positives) which were
automatically transformed into executable assertions using
PostmanAssertify [21].

c) Test Cases: For each API operation, we randomly
selected 1k API requests and responses from the set of 10k
previously used (see Section IV-A1) meeting the following
constraints: (i) they were not part of the 50-request set used
as input for AGORA+; (ii) they contained at least one result
item (since we cannot apply mutation operators on empty
arrays); and (iii) they revealed no failures (since mutation
testing requires a green test suite).

d) Mutants: Since we do not have access to the source
code of the APIs under test, we cannot apply traditional
mutation testing techniques. Instead, we used a black-box
approach by mutating directly the API responses. This is the
same approach used by the authors of AGORA+ [20], [21] to
evaluate the effectiveness of their approach.

We used JSONMutator [82] to introduce a single error in
each API response, simulating a failure that could be caused
by a fault in the API. JSONMutator is configured to apply
mutation operators that result in syntactically valid mutants,
i.e., conform to the API specification. Syntactically invalid
mutants that would result in violations of the API specification
(e.g., adding a new property to a JSON object) can be detected
by existing approaches and therefore are out of the scope of
both SATORI and AGORA+. Similarly, the mutation operators
that convert response fields into null values are disabled,
since null values can be easily detected as violations of the
nullable property of OAS. The mutation operators applied

TABLE III: RQ3: # assertions (A) and % failure detection ratio
(FDR) per API operation and overall by each approach.

AGORA+U AGORA+ bin. AGORA+ SATORI Both
API - Operation #A FDR #A FDR #A FDR #A FDR #A FDR
AmadeusHotel 47 56.4 22 3.8 69 60.2 70 48.5 107 66.9
Deutschebahn 32 19 6 0.8 38 19.8 53 16.8 73 26.5
DHL 10 45.6 3 2.8 13 48.3 10 34.8 19 51.2
FDIC 107 43.8 30 3.1 137 46.9 114 27.4 187 52.9
GitHub-createRepo 75 34.9 117 57.9 192 92.8 92 39.5 226 92.8
GitHub-getRepos 69 40.1 61 24.7 130 64.9 72 37.8 143 65.5
GitLab-getBadges 3 30.4 0 0 3 30.4 5 35.8 6 49.4
GitLab-projectJobs 42 25.5 11 11.6 53 37.2 48 23.9 83 39.8
Marvel 40 30.3 16 6.3 56 36.6 31 19 69 39.3
OMDB-byIdTitle 14 33.8 1 2.4 15 36.2 9 17.7 16 38
OMDB-bySearch 4 18.6 1 2 5 20.6 2 14.7 5 20.6
Spotify-playlist 18 46.7 22 46.1 40 92.8 15 28.9 46 92.8
Spotify-albumTracks 23 65.6 19 1.6 42 67.2 21 53.9 48 68.4
Spotify-artistAlbums 22 68.1 21 7.4 43 75.6 19 56.8 48 78.3
Vimeo 104 23.2 95 23.9 199 47.1 111 20.5 255 51.6
Yelp 7 11.5 5 12.1 12 23.6 17 15 24 31
YouTube 53 60.8 37 5.3 90 66.1 125 37.3 183 70.7
TOTAL 670 38.5 467 12.5 1137 51 814 31.1 1538 55

in this context include modifications to boolean, number, and
string values (e.g., by modifying or replacing values) as well as
changes to array values (e.g., by removing elements or altering
their order). In total, 12 different mutation operators are
applied. All the mutations result in a distinguishable change
in the API response and therefore there were no equivalent
mutants [83]. Our supplementary material contains a detailed
list of all the mutation operators applied [25].

e) Metrics: For each mutated API response of the 1k
test cases used, we ran the assertions and marked the failure
as detected if at least one of the test assertions failed. Then,
we computed the failure detection ratio (FDR) achieved by the
approach on the test suite. We repeated the mutation process
100 times to minimize the effect of randomness, computing
the average percentage of failures detected. In total, the results
are based on 1.7M seeded errors: 17 operations × 1k API
responses × 100 repetitions.

2) Experimental Results: Table III shows the number of
assertions generated (i.e., true positive oracles) and the FDR
achieved by SATORI, AGORA+ (unary, binary and com-
bined), and the combination of both. SATORI achieved an
average FDR of 31.1%, ranging from 14.7% to 56.8%.
AGORA+U achieved an average FDR of 38.5%, ranging from
11.5% to 68.1%. The binary oracles of AGORA+ increased
FDR an average of 12.5%, leading to an average FDR for
AGORA+ of 51%. The combination of both SATORI and
AGORA+ achieved a FDR of 55%, ranging from 20.6% to
92.8%. In terms of assertions, SATORI generated an average
of 47.9 per API operation, more than AGORA+U (39.4) and
less than AGORA+ (66.9).

While AGORA+U achieved a higher FDR than SATORI,
two things are worth noting. First, SATORI uncovered 80.8%
of the failures detected by AGORA+U (and 61% of the failures
detected by AGORA+) without needing to execute the API,
which represents a significant advantage in terms of cost-
effectiveness. Second, SATORI managed to uncover new fail-
ures not detected by AGORA+U, as shown in Figure 4, which
represents the overlap (blue) of the FDR between SATORI
(green) and AGORA+ (orange), as well as the FDR achieved

by the binary oracles (gray) and the optimal scenario of the
ground-truth oracles (red). As illustrated, SATORI detected
unique failures in 14 out of the 17 API operations. This means
that SATORI can be used to complement AGORA+U, as it can
detect failures that AGORA+U cannot, and vice versa. The
combination of both approaches achieved an FDR of 55%,
which is significantly higher than the FDR of either approach
alone.

Figure 4 also provides interesting insights regarding the
strength of the unary oracles generated by SATORI and
AGORA+U combined. In most APIs, the generated unary
oracles (blue, green and orange bars) achieved an FDR very
close to that achieved by the ground-truth oracles, i.e., the
optimal scenario (red lines). In detail, the ground-truth oracles
achieved an average FDR of 47.6% across all API operations.
The automatically generated unary oracles achieved an average
FDR of 44.3%, just 3.3% below the ground-truth oracles. This
indicates that these unary oracles are very effective at detecting
the failures that they are designed to detect. Intuitively, there
are some failures that are impossible to detect even with the
ground-truth oracles, such as subtle modifications to string
fields which do not follow any format or the mutation of
a number field within a certain valid range. Detecting such
failures is extremely challenging and requires domain-specific
knowledge or even manual inspection.

The APIs of GitHub, Spotify-playlist, Vimeo, and Yelp
benefited from the binary test oracles of AGORA+ (gray bars),
achieving a notable boost in FDR. This is primarily due to
the presence of numerous equality (e.g., input.description
== return.description), substring (e.g., return.name
substring of return.full_name), and arithmetic (e.g.,
return.total >= size(return.businesses[])) compar-
isons in these APIs, which contribute to the inflated results.

The higher FDR (i.e., detecting more failures) of AGORA+
over SATORI (51% vs. 31.1%) does not necessarily mean that
AGORA+ can catch more real bugs than SATORI. Our next
experiment is designed to further explore this aspect.

Answer to RQ3: Artificial fault detection capability

SATORI detected 61% of the failures detected by
AGORA+ without previously executing the API under test,
with an FDR ranging between 14.7% and 56.8%. More
importantly, both approaches are complementary, achieving
a combined FDR of 55%.

C. Experiment 3: Real Fault Detection

This experiment addresses RQ4 by comparing the effective-
ness of SATORI and AGORA+ in detecting failures caused
by real faults.

1) Experimental Setup: We compared the performance of
SATORI and AGORA+ in detecting real failures by converting
the valid test oracles reported by each approach into executable
assertions using PostmanAssertify. These assertions were then
executed on the original dataset of 10k API requests from
Experiment 1. Violations of these test oracles revealed real

AmadeusHotel

Deutschebahn

DHL
FDIC

GitHub-createRepo

GitHub-getRepos

GitLab-getProjectsIdBadges

GitLab-listProjectJobs

Marvel

OMDB-byIdTitle

OMDB-bySearch

Spotify-playlist

Spotify-albumTracks

Spotify-artistAlbums

Vimeo
Yelp

YouTube

0

20

40

60

80

100
Both SATORI AGORA+u AGORA+ binary oracles Unary ground truth

FD
R
 (

%
)

Fig. 4: FDR overlapping between SATORI and AGORA+.
TABLE IV: RQ4: Faults detected by SATORI and AGORA+.

#Bug Cat. API-Operation AGORA+ SATORI

1 1 AmadeusHotel 1 ✓
2 2 Deutschebahn 10 ✓
3 1 Deutschebahn - ✓
4 1 Deutschebahn - ✓
5 1 Deutschebahn 1 ✓
6 2 FDIC 10 ✓
7 2 FDIC 10 ✓
8 2 FDIC 10 ✓
9 2 FDIC - ✓

10 2 FDIC - ✓
11 2 FDIC - ✓
12 2 FDIC - ✓
13 4 GitHub-createRepo 9 -
14 1 GitLab-projectBadges 2 ✓
15 2 Marvel 1 ✓
16 3 Marvel 10 -
17 1 Marvel 10 -
18 1 Marvel 6 -
19 1 Marvel - ✓
20 2 OMDB-bySearch 10 ✓
21 2 Vimeo - ✓
22 3 Vimeo - ✓

Found always / Found at least once 7/13 18/18

bugs. For AGORA+, we repeated the experiment 10 times,
each using a different random subset of 50 requests for
invariant detection, and report the number of executions in
which AGORA+ identified each bug.

2) Experimental Results: Table IV shows all bugs found
among SATORI and AGORA+. SATORI found 18 bugs, while
AGORA+ found 13 (although only 7 of them were consistently
detected in all executions). In total, both approaches detected
22 unique bugs across 8 APIs; 13 of these bugs (bugs 1,
5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, and 20) were also
detected by the authors of AGORA+ [20], [21]; 2 of the new
bugs found only by SATORI (bugs 21 and 22) have been
confirmed by developers. Our supplementary material provides
detailed bug descriptions, replication videos, and anonymized
screenshots of reports and developer responses [25]. These
bugs are grouped into the following four categories:

Category 1: Invalid String Formats. These bugs occur
when a string response field is expected to follow a specific
format (e.g., country codes, numbers, or timestamps), but the
API returns values that deviate from this format. For example,
in the “projectBadges” operation of the GitLab API (bug
14), SATORI and AGORA+ identified instances where the
rendered_image_url response field, expected to be a URL,
instead returned invalid URLs containing whitespaces.

Category 2: Invalid Enum Values. These bugs are found

when a response field is expected to hold specific string values
(often outlined in the specification), but the API returns either
undocumented values (bugs 9, 10, 11, 12, 15, 20, and 21) or
entirely different ones (bugs 2, 6, 7, and 8). For instance, in
the FDIC specification, the CONSERVE and LAW_SASSER_FLG
fields are expected to use numerical flags (“1” or “0”), yet the
API returns “Y” or “N” (bugs 6 and 7). Similarly, in the Vimeo
API (bug 21), while the specification lists 14 valid values
for the account field, the API also returns an undocumented
value (“custom”). The Vimeo API providers confirmed this
inconsistency and created an internal issue to fix it.

Category 3: Numerical Constraints. These bugs occur
when a numerical response field does not comply with ex-
pected constraints, such as minimum or maximum values. For
example, in the Vimeo API, the field_of_view response field
should range from 30 to 90. However, SATORI detected three
videos with values exceeding the upper limit (bug 22). This
bug has been confirmed by the API providers, and they have
created an internal issue to update the API documentation.

Category 4: Binary Test Oracles. These bugs occur
when a test oracle involving two variables is violated,
making them detectable only by AGORA+. The only bug
of this category (bug 13) was found in the “GitHub-
createRepo” operation, where the violation of the invariant
input.license_template==return.license.key revealed
15 cases of repositories being created with incorrect licenses.

Answer to RQ4: Real fault detection capability

SATORI effectively detected 18 real bugs in 7 APIs.

D. Cost-Effectiveness Analysis

Our last RQ investigates the monetary cost of using SATORI
to automatically generate test oracles for REST APIs and find
bugs in them.

One of the main advantages of SATORI is its cost-
effectiveness. Unlike what intuitively might be expected,
SATORI does not rely on LLMs to analyze API responses,
but rather the API specification. This means that SATORI can
be executed once for each API response field from which one
would desire to extract test oracles, and then the generated
oracles can be reused for all subsequent API calls. Following
this approach, we computed the marginal inference cost of
using SATORI with GPT-4o, the LLM that achieved the best
performance in our experiments. As we considered 1,816 API
response fields, we made 1,816 calls to the OpenAI API, which
resulted in 716,529 input tokens and 101,949 output tokens.
According to the OpenAI pricing at the time of performing
the calls,1 this resulted in a total of $5.11. As we found 18
bugs in total, the cost per bug is $0.28.

We also analyzed whether this cost could be reduced or
avoided by using a free, open-source LLM executed locally.
We selected the best-performing one from RQ1, Qwen2.5-32B.
The oracles generated by SATORI equipped with Qwen2.5-
32B successfully found 17 bugs, missing only bug 10 in the

1$5 per 1M input tokens ($2.5 if cached), $20 per 1M output tokens [84].

FDIC API. This indicates that SATORI is highly effective
even when relying on open-source, smaller language mod-
els. However, we note that using models like Qwen2.5-32B
locally requires significant computational infrastructure (e.g.,
high-end GPUs), and thus their actual cost depends on the
availability of such infrastructure and the volume of reuse.

Answer to RQ5: Cost-effectiveness analysis

In total, SATORI with GPT-4o found 18 bugs for $5.11
($0.28 per bug). SATORI with Qwen2.5-32B could find
17 of these bugs.

V. THREATS TO VALIDITY

We discuss the potential threats to the validity of our results,
along with the actions taken to mitigate them.

Internal validity. Are there factors that might affect the
results of our evaluation? For our experiments, we used the
OAS documents provided in the AGORA+ supplementary ma-
terial [79]. In all cases, we updated the OAS to reflect the latest
version of the web documentation. It is possible that these
specifications have errors and deviate from the documented
API behavior. To mitigate this threat, the specification files
were reviewed by at least two authors.

The effectiveness of AGORA+ largely depends on the
diversity of the input test suite. For a fair evaluation, we
followed the same approach by the authors and used their
same test suites [79], leveraging the same 10 sets of 50
randomly generated request-response pairs and computing
averages across the 10 runs. To address the potential variability
of SATORI, we use the default settings for all models and a
temperature of 0 (greedy decoding), making the outputs of the
models mostly deterministic.

Manually creating the ground truth of test oracles for all
the APIs may be affected by human biases or errors. To
mitigate this, we carefully analyzed the API specification for
each response field labeled and contacted the API providers in
case of doubts or discrepancies. Our supplementary material
contains evidence of the questions posed to API providers and
their responses, as well as the full OKAMI dataset, which is
publicly available for further review [25].

External validity. To what extent can we generalize the
findings of our investigation? We evaluated SATORI using
21 different LLMs and a set of 17 operations from 12 APIs.
Our conclusions may not fully generalize beyond this scope.
To mitigate this threat, we selected LLMs of varying sizes
and vendors, along with a set of widely-used APIs spanning
diverse domains and sizes, and used in related studies.

The test oracles supported by SATORI may not generalize
beyond the selected APIs. We minimized this threat by basing
these oracles on the unary invariants supported by AGORA+,
derived from a systematic analysis of 40 real-world APIs (702
operations) from diverse domains [28]. However, we note that
this list of test oracles is not exhaustive, and SATORI is
designed to be easily extended with additional oracles.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces SATORI, a black-box static approach
for generating test oracles for REST APIs from their specifi-
cation using LLMs. SATORI analyzes the response fields of
an API operation, providing them as inputs to a target LLM,
which infers a set of pre-defined test oracles. SATORI then
converts these inferred oracles into a machine-readable format
compatible with an extended version of PostmanAssertify,
a tool that transforms the oracles into executable Postman
assertions. This integration makes SATORI readily applicable
for practical use.

Evaluation results on a set of 17 operations from 12 indus-
trial APIs show that SATORI can generate hundreds of valid
test oracles per operation without executing the API. SATORI
achieved an F1-Score of 74.3%. The differences in perfor-
mance between SATORI and AGORA+ reveal complementary
strengths, with each approach excelling at detecting distinct
types of test oracles, and their combination achieving a failure
detection ratio of 55%. SATORI identified 18 bugs across 7
widely used industrial APIs, leading to documentation updates
in the API of Vimeo. Operating in black-box mode, SATORI
can also be easily integrated with API testing tools that support
OAS. As part of our future work, we intend to extend SATORI
to support test oracles involving multiple variables.

REFERENCES

[1] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide, 2011.
[2] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs, 2013.
[3] R. T. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[4] “Vimeo REST API,” 2025, accessed May 2025. [Online]. Available:
https://developer.vimeo.com/api

[5] “Postman 2024 State of the API report,” 2024, accessed May 2025.
[Online]. Available: https://www.postman.com/state-of-api/2024/

[6] A. Golmohammadi, M. Zhang, and A. Arcuri, “Testing RESTful APIs:
A Survey,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 1, Nov.
2023.

[7] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated Test Generation
for REST APIs: No Time to Rest Yet,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2022, 2022, p. 289–301.

[8] “OpenAPI Specification,” 2025, accessed May 2025. [Online].
Available: https://www.openapis.org

[9] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[10] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST
API Fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 748–758.

[11] A. Arcuri, “RESTful API Automated Test Case Generation with Evo-
Master,” ACM Transactions on Software Engineering and Methodology,
vol. 28, no. 1, pp. 1–37, 2019.

[12] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-
Box Constraint-Based Testing of RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2020, pp. 459–475.

[13] S. Karlsson, A. Causevic, and D. Sundmark, “QuickREST: Property-
based Test Generation of OpenAPI Described RESTful APIs,” in In-
ternational Conference on Software Testing, Validation and Verification,
2020, pp. 131–141.

[14] E. Viglianisi, M. Dallago, and M. Ceccato, “RestTestGen: Automated
Black-Box Testing of RESTful APIs,” in International Conference on
Software Testing, Verification and Validation, 2020.

[15] Z. Hatfield-Dodds and D. Dygalo, “Deriving Semantics-Aware Fuzzers
from Web API Schemas,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2022, pp. 345–346.

[16] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial Testing of RESTful
APIs,” in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22, 2022, p. 426–437.

[17] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential Regression
Testing for REST APIs,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2020, 2020, p. 312–323.

[18] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking Security Prop-
erties of Cloud Services REST APIs,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
2020, pp. 387–397.

[19] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Online Testing of
RESTful APIs: Promises and Challenges,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2022, 2022,
p. 408–420.

[20] J. C. Alonso, S. Segura, and A. Ruiz-Cortés, “AGORA: Automated
Generation of Test Oracles for REST APIs,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023, 2023, p. 1018–1030.

[21] J. C. Alonso, M. D. Ernst, S. Segura, and A. Ruiz-Cortés, “Test Oracle
Generation for REST APIs,” ACM Trans. Softw. Eng. Methodol., Mar.
2025, just Accepted.

[22] “Chai Assertion Library.” 2025, accessed May 2025. [Online].
Available: https://www.chaijs.com/api/bdd/

[23] “Postman API Platform,” 2025, accessed May 2025. [Online]. Available:
https://www.postman.com

[24] “OKAMI dataset,” 2025, accessed August 2025. [Online]. Available:
https://huggingface.co/datasets/javalenzuela/okami-dataset

[25] “SATORI Replication package,” 2025, accessed May 2025. [Online].
Available: https://doi.org/10.5281/zenodo.15529767

[26] “Yelp API,” 2025, accessed May 2025. [Online]. Available: https:
//docs.developer.yelp.com/docs/getting-started

[27] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated
Black-Box Testing of RESTful Web APIs,” in International Symposium
on Software Testing and Analysis, 2021.

[28] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “ARTE: Automated Generation of Realistic Test Inputs for Web
APIs,” IEEE Transactions on Software Engineering, 2022.

[29] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
Testing of RESTful Web APIs,” IEEE Transactions on Software Engi-
neering, vol. 44, no. 11, pp. 1083–1099, 2018.

[30] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent REST API
Data Fuzzing,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, p. 725–736.

[31] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and
M. Bao, “Morest: Model-Based RESTful API Testing with Execution
Feedback,” in Proceedings of the 44th International Conference on
Software Engineering, ser. ICSE ’22, 2022, p. 1406–1417.

[32] M. Kim, D. Corradini, S. Sinha, A. Orso, M. Pasqua, R. Tzoref-Brill,
and M. Ceccato, “Enhancing REST API Testing with NLP Techniques,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1232–1243.

[33] L. Pan, S. Cohney, T. Murray, and V.-T. Pham, “EDEFuzz: A Web API
Fuzzer for Excessive Data Exposures,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.

[34] M. Kim, S. Sinha, and A. Orso, “Adaptive REST API Testing with Rein-
forcement Learning,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). Los Alamitos, CA, USA:
IEEE Computer Society, sep 2023, pp. 446–458.

[35] M. Kim, T. Stennett, D. Shah, S. Sinha, and A. Orso, “Leveraging Large
Language Models to Improve REST API Testing,” 2024.

[36] R. Yandrapally, S. Sinha, R. Tzoref-Brill, and A. Mesbah, “Carving UI
Tests to Generate API Tests and API Specification,” in Proceedings of
the 45th International Conference on Software Engineering, ser. ICSE
’23. IEEE Press, 2023, p. 1971–1982.

https://developer.vimeo.com/api
https://www.postman.com/state-of-api/2024/
https://www.openapis.org
https://www.chaijs.com/api/bdd/
https://www.postman.com
https://huggingface.co/datasets/javalenzuela/okami-dataset
https://doi.org/10.5281/zenodo.15529767
https://docs.developer.yelp.com/docs/getting-started
https://docs.developer.yelp.com/docs/getting-started

[37] D. Corradini, Z. Montolli, M. Pasqua, and M. Ceccato, “DeepREST:
Automated Test Case Generation for REST APIs Exploiting Deep
Reinforcement Learning,” in Proceedings of the 39th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ser. ASE
’24, 2024, p. 1383–1394.

[38] T. Le, T. Tran, D. Cao, V. Le, T. N. Nguyen, and V. Nguyen, “
KAT: Dependency-Aware Automated API Testing with Large Language
Models ,” in 2024 IEEE Conference on Software Testing, Verification
and Validation (ICST), May 2024, pp. 82–92.

[39] S. Segura, J. C. Alonso, A. Martin-Lopez, A. Durán, J. Troya, and
A. Ruiz-Cortés, “Automated generation of metamorphic relations for
query-based systems,” in 2022 IEEE/ACM 7th International Workshop
on Metamorphic Testing (MET), 2022, pp. 48–55.

[40] A. Martin-Lopez, S. Segura, C. Müller, and A. Ruiz-Cortés, “Specifica-
tion and Automated Analysis of Inter-Parameter Dependencies in Web
APIs,” IEEE Transactions on Services Computing, 2021.

[41] D. Stallenberg, M. Olsthoorn, and A. Panichella, “Improving Test Case
Generation for REST APIs through Hierarchical Clustering,” in Pro-
ceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’21, 2022, p. 117–128.

[42] M. Kim, T. Stennett, S. Sinha, and A. Orso, “A Multi-Agent Approach
for REST API Testing with Semantic Graphs and LLM-Driven Inputs,”
2024.

[43] M. Kim, S. Sinha, and A. Orso, “LlamaRestTest: Effective REST API
Testing with Small Language Models,” 2025.

[44] H. Grent, A. Akimov, and M. Aniche, “Automatically identifying param-
eter constraints in complex web APIs: a case study at Adyen,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp. 71–80.

[45] R. Huang, M. Motwani, I. Martinez, and A. Orso, “Generating REST
API specifications through static analysis,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[46] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the Usage of Text-To-Text
Transfer Transformer to Support Code-Related Tasks,” in Proceedings of
the 43rd International Conference on Software Engineering, ser. ICSE
’21, 2021, p. 336–347.

[47] H. Yu, Y. Lou, K. Sun, D. Ran, T. Xie, D. Hao, Y. Li, G. Li, and
Q. Wang, “Automated Assertion Generation via Information Retrieval
and Its Integration with Deep Learning,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22, 2022,
p. 163–174.

[48] G. Gay, S. Rayadurgam, and M. P. Heimdahl, “Improving the Accuracy
of Oracle Verdicts through Automated Model Steering,” in Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14, 2014, p. 527–538.

[49] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan, and
X. Zhang, “C2S: Translating Natural Language Comments to Formal
Program Specifications,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020, New York,
NY, USA, 2020, p. 25–37.

[50] F. Molina, M. d’Amorim, and N. Aguirre, “Fuzzing class specifications,”
in Proceedings of the 44th International Conference on Software Engi-
neering, ser. ICSE ’22, New York, NY, USA, 2022, p. 1008–1020.

[51] T. Chen, K. Heo, and M. Raghothaman, “Boosting static analysis
accuracy with instrumented test executions,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2021, 2021, p. 1154–1165.

[52] C. G. Kapugama, V.-T. Pham, A. Aleti, and M. Böhme, “Human-in-the-
loop oracle learning for semantic bugs in string processing programs,”
in Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2022, 2022, p. 215–226.

[53] A. R. Ibrahimzada, Y. Varli, D. Tekinoglu, and R. Jabbarvand, “Perfect
is the enemy of test oracle,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 70–81.

[54] W. Dou, Z. Cui, Q. Dai, J. Song, D. Wang, Y. Gao, W. Wang, J. Wei,
L. Chen, H. Wang, H. Zhong, and T. Huang, “Detecting isolation
bugs via transaction oracle construction,” in 2023 IEEE/ACM 45th

International Conference on Software Engineering (ICSE), 2023, pp.
1123–1135.

[55] J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and M. Ar-
ratibel, “Generating metamorphic relations for cyber-physical systems
with genetic programming: An industrial case study,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021, 2021, p. 1264–1274.

[56] H. B. Braiek and F. Khomh, “On testing machine learning programs,”
Journal of Systems and Software, vol. 164, p. 110542, 2020.

[57] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[58] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[59] P. Cousot and R. Cousot, “Abstract interpretation frameworks,” Journal
of Logic and Computation, vol. 2, 08 1992.

[60] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1, pp.
35–45, 2007, special issue on Experimental Software and Toolkits.

[61] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,” IEEE
Trans. Softw. Eng., vol. 50, no. 4, p. 911–936, Feb. 2024.

[62] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation of
using large language models for automated unit test generation,” IEEE
Transactions on Software Engineering, vol. 50, no. 1, pp. 85–105, 2024.

[63] Z. Yuan, M. Liu, S. Ding, K. Wang, Y. Chen, X. Peng, and Y. Lou,
“Evaluating and Improving ChatGPT for Unit Test Generation,” Proc.
ACM Softw. Eng., vol. 1, no. FSE, Jul. 2024.

[64] N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated unit
test improvement using large language models at meta,” in Companion
Proceedings of the 32nd ACM International Conference on the Founda-
tions of Software Engineering, ser. FSE 2024. New York, NY, USA:
Association for Computing Machinery, 2024, p. 185–196.

[65] S. Bhatia, T. Gandhi, D. Kumar, and P. Jalote, “Unit Test Generation
using Generative AI: A Comparative Performance Analysis of Auto-
generation Tools,” in Proceedings of the 1st International Workshop on
Large Language Models for Code, ser. LLM4Code ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 54–61.

[66] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4All:
Universal Fuzzing with Large Language Models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024.

[67] M. Sun, Y. Yang, Y. Wang, M. Wen, H. Jia, and Y. Zhou, “SMT
Solver Validation Empowered by Large Pre-Trained Language Models,”
in Proceedings of the 38th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’23. IEEE Press, 2024,
p. 1288–1300.

[68] S. Feng and C. Chen, “Prompting is all you need: Automated an-
droid bug replay with large language models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024.

[69] T.-O. Li, W. Zong, Y. Wang, H. Tian, Y. Wang, S.-C. Cheung, and
J. Kramer, “Nuances are the key: Unlocking chatgpt to find failure-
inducing tests with differential prompting,” in Proceedings of the 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’23. IEEE Press, 2024, p. 14–26.

[70] S. Gao, X.-C. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu, “What
makes good in-context demonstrations for code intelligence tasks with
llms?” in Proceedings of the 38th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’23, 2024, p. 761–773.

[71] S. B. Hossain and M. Dwyer, “Togll: Correct and strong test oracle
generation with llms,” 2024.

[72] S. B. Hossain, A. Filieri, M. B. Dwyer, S. Elbaum, and W. Visser,
“Neural-based test oracle generation: A large-scale evaluation and
lessons learned,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 120–132.

[73] Y. He, J. Huang, H. Yu, and T. Xie, “An empirical study on focal
methods in deep-learning-based approaches for assertion generation,”
Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul. 2024.

[74] M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri, “Can large
language models transform natural language intent into formal method
postconditions?” Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul. 2024.

[75] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating
accurate assert statements for unit test cases using pretrained transform-
ers,” in Proceedings of the 3rd ACM/IEEE International Conference on
Automation of Software Test, ser. AST ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 54–64.

[76] D. Molinelli, A. Martin-Lopez, E. Zackrone, B. Eken, M. D. Ernst, and
M. Pezzè, “Tratto: A neuro-symbolic approach to deriving axiomatic
test oracles,” vol. 2, no. ISSTA. New York, NY, USA: Association for
Computing Machinery, Jun. 2025.

[77] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar,
J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern catalog to
enhance prompt engineering with chatgpt,” in Proceedings of the 30th
Conference on Pattern Languages of Programs, ser. PLoP ’23, 2023.

[78] S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li,
A. Gupta, H. Han, S. Schulhoff, P. S. Dulepet, S. Vidyadhara, D. Ki,
S. Agrawal, C. Pham, G. Kroiz, F. Li, H. Tao, A. Srivastava, H. D.
Costa, S. Gupta, M. L. Rogers, I. Goncearenco, G. Sarli, I. Galynker,
D. Peskoff, M. Carpuat, J. White, S. Anadkat, A. Hoyle, and P. Resnik,
“The prompt report: A systematic survey of prompt engineering tech-
niques,” 2025.

[79] “AGORA+ Replication package,” 2025, accessed May 2025. [Online].
Available: https://doi.org/10.5281/zenodo.12506791

[80] “OpenAI API,” 2025, accessed May 2025. [Online]. Available:
https://platform.openai.com/docs/overview

[81] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang, X. Bi et al., “DeepSeek-R1: Incentivizing Reasoning Capability
in LLMs via Reinforcement Learning,” 2025.

[82] “JSONMutator,” 2025, accessed May 2025. [Online]. Available:
https://github.com/isa-group/JSONmutator

[83] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” ser.
Advances in Computers, 2019, vol. 112, pp. 275–378.

[84] “OpenAI API Pricing,” 2025, accessed May 2025. [Online]. Available:
https://openai.com/api/pricing/

https://doi.org/10.5281/zenodo.12506791
https://platform.openai.com/docs/overview
https://github.com/isa-group/JSONmutator
https://openai.com/api/pricing/

	Introduction
	Background and Related Work
	Automated Testing of REST APIs
	Test Oracle Generation

	SATORI
	Automated Response Field Prompt Generation
	Information Extraction
	Prompt Generation

	LLM Response Processing
	Target Oracles

	Evaluation
	Experiment 1: Test Oracle Generation
	Experimental Setup
	RQ1: Experimental Results
	RQ2: Experimental Results

	Experiment 2: Artificial Fault Detection
	Experimental Setup
	Experimental Results

	Experiment 3: Real Fault Detection
	Experimental Setup
	Experimental Results

	Cost-Effectiveness Analysis

	Threats to Validity
	Conclusions and Future Work
	References

