
Test Oracle Generation for REST APIs

JUAN C. ALONSO, SCORE Lab, I3US Institute, Universidad de Sevilla, Spain

MICHAEL D. ERNST, University of Washington, USA

SERGIO SEGURA, SCORE Lab, I3US Institute, Universidad de Sevilla, Spain

ANTONIO RUIZ-CORTÉS, SCORE Lab, I3US Institute, Universidad de Sevilla, Spain

The number and complexity of test case generation tools for REST APIs have significantly increased in recent years. These tools excel
in automating input generation but are limited by their test oracles, which can only detect crashes, regressions, and violations of API
specifications or design best practices. This article introduces AGORA+, an approach for generating test oracles for REST APIs through
the detection of invariants—output properties that should always hold. AGORA+ learns the expected behavior of an API by analyzing
API requests and their corresponding responses. We enhanced the Daikon tool for dynamic detection of likely invariants, adding
new invariant types and creating a front-end called Beet. Beet translates any OpenAPI specification and a set of API requests and
responses into Daikon inputs. AGORA+ can detect 106 different types of invariants in REST APIs. We also developed PostmanAssertify,
which converts the invariants identified by AGORA+ into executable JavaScript assertions. AGORA+ achieved a precision of 80%
on 25 operations from 20 industrial APIs. It also identified 48% of errors systematically seeded in the outputs of the APIs under test.
AGORA+ uncovered 32 bugs in popular APIs, including Amadeus, Deutschebahn, GitHub, Marvel, NYTimesBooks, and YouTube,
leading to fixes and documentation updates.

CCS Concepts: • Software and its engineering→ Software testing and debugging; • Information systems→ RESTful web
services.

Additional Key Words and Phrases: REST APIs, test oracle, invariant detection, automated testing

ACM Reference Format:
Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés. 2024. Test Oracle Generation for REST APIs. J. ACM 37, 4,
Article 111 (August 2024), 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Web Application Programming Interfaces (APIs) allow heterogeneous software systems to interact over the network [67,
96]. Most modern web APIs are REST APIs [51] that adhere to the REpresentational State Transfer (REST) architectural
style. REST APIs are decomposed into multiple resources (e.g., a payment in the VISA API [25]) that clients can
manipulate through HTTP interactions. REST APIs have become the de facto standard for software integration. They
are a key part of the business model of companies such as Amazon, Google, and Netflix [67]. The RapidAPI [14]
repository hosts over 40K REST APIs.

Authors’ addresses: Juan C. Alonso, javalenzuela@us.es, SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain; Michael D. Ernst, mernst@cs.
washington.edu, University of Washington, USA; Sergio Segura, sergiosegura@us.es, SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain;
Antonio Ruiz-Cortés, aruiz@us.es, SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-1177-9262
HTTPS://ORCID.ORG/0000-0001-9379-277X
HTTPS://ORCID.ORG/0000-0001-8816-6213
HTTPS://ORCID.ORG/0000-0001-9827-1834
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-1177-9262
https://orcid.org/0000-0001-9379-277X
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0001-9827-1834

2 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

The importance of REST APIs has driven the creation of numerous techniques and tools for the automated detection
of failures within these APIs [59, 75]. Most techniques adopt a black-box approach, where test cases are automatically
derived from the specification of the API under test, typically in the OpenAPI Specification (OAS) format [11]. These
test cases are created by setting values to the input parameters and checking the validity of the returned responses by
applying different test oracles, i.e., tests of correctness [37]. These tools are all limited in the types of failures that they can
detect, namely crashes (responses with a 5XX HTTP status code) [32, 33, 62, 69, 72, 74, 82, 103, 106], disconformities with
the API specification (e.g., a missing output JSON property) [32, 62, 69, 82, 103], regressions [54, 57], and violations of API
best practices (e.g., checking that the results of multiple calls to idempotent operations are identical) [34, 36, 102, 112].
As an example, Listing 2 shows the response of the “getAlbumTracks” operation of the Spotify API for the request
“GET https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES”. The response conforms to the
API specification and therefore would be considered as a correct output by existing tools. However, the response could
still contain errors that would go unnoticed by current tool support, including incorrect field length (e.g., the country
codes of the available_markets response field should have length 2) or format (e.g., the values of the href and uri
response fields should be URLs) and violations of numerical constraints (e.g., the total and duration_ms response
fields cannot be negative) or array properties (e.g., the total response field should be greater than or equal to the size
of the items array), among others. None of these errors would be detected by any existing approach proposed in the
literature, since all the responses are syntactically valid and conform to the corresponding API specifications. Recent
surveys [59] and tool comparisons [75, 84] have identified the generation of test oracles as one of the major challenges
in the generation of test cases for REST APIs. This is the problem that motivates our work.

The automated generation of test oracles is an active research topic. Existing approaches mostly differ on the inputs
fromwhich test oracles are generated, including source code [46, 105], program specifications [53, 66], documentation [38,
58], and previous executions [86, 88]. One approach for test oracle generation is the detection of likely invariants,
properties of the program that should always hold, e.g., “𝑖𝑛𝑝𝑢𝑡 .𝑣𝑎𝑟 ≠ 𝑛𝑢𝑙𝑙 ⇒ output.array is ordered”. Invariants are
often discovered by analyzing previous program inputs and outputs, making this method language-independent and
black-box (applicable when the source code is not available, such as REST APIs). This is the strategy we use.

This article presents AGORA+, a black-box approach for the Automated Generation of Oracles for REST APIs through
the detection of likely invariants. AGORA+ was created by extending and modifying the Daikon [50] system for dynamic
invariant detection in two directions. Firstly, we present a novel software tool—a Daikon front-end called Beet—that
converts an OAS specification, plus a set of API requests and responses, into a format processable by Daikon. This
makes our approach seamlessly integrable into existing API testing tools supporting OAS specifications. Secondly, we
further enhanced the capabilities of Daikon by customizing and expanding its set of invariant templates. Currently,
AGORA+ supports the detection of 106 distinct types of invariants in REST APIs. Finally, to foster its use in practice,
we introduce PostmanAssertify. This is a tool that transforms the invariants detected by AGORA+ into executable
JavaScript scripts with assertions, written using the Chai library [2], that are compatible with Postman [12], a popular
API platform in industry.

Evaluation results using 25 operations from 20 industrial APIs showed that just 50 API requests and responses
is sufficient for AGORA+ to learn hundreds of accurate invariants (test oracles), achieving a precision of 68%. This
precision improves to 80% when learning from 10K API requests. These results surpass those obtained using the default
set of invariants in Daikon, whose precision is less than 40%. We also evaluated the effectiveness of the generated test
oracles in detecting failures by automatically seeding 2.5M faults in the outputs of the API operations under test. The

Manuscript submitted to ACM

https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES

Test Oracle Generation for REST APIs 3

test oracles generated by AGORA+, learned from only 50 API requests, were able to detect 48% of the incorrect outputs,
supporting the cost-effectiveness of our approach.

During our evaluation, AGORA+ generated several invariants that, when manually analyzed, indicated issues
within the target APIs. One example was the invariant return.room.typeEstimated.beds >= 0, which revealed a
confirmed bug in the Amadeus API where certain hotel offers included rooms with zero beds. Overall, AGORA+ resulted
in the detection of 32 faults (17 confirmed, 10 fixed) in 13 operations of 11 industrial APIs, that led to bug fixes in many
of them, including updates in the documentation of GitHub. All these bugs would have passed unnoticed by current
test case generators. This highlights the value of AGORA+ not only as a test oracle generation approach, but also as a
testing technique on its own.

This paper first introduces background and related work on testing REST APIs, test oracle generation, and dynamic
invariant detection (Section 2). Then, the paper presents the following original research and engineering contributions:

• AGORA+, a black-box approach for the automated generation of test oracles for REST APIs based on the analysis
of the API specification and previous requests and responses (Section 3).

• Beet (Section 3.1), a Daikon front-end for REST APIs readily integrable into existing test case generation tools for
REST APIs supporting OAS specifications. Beet is open-source and available on GitHub [1].

• Several Daikon extensions [3, 4], including reporting invariants in CSV format, support for the detection of 22
new types of invariants (Section 3.2), new heuristics for automatically suppressing common false positive patterns
(Section 3.3), as well as a new output format that returns executable assertions compatible with the JavaScript Chai
library (Section 3.4).

• PostmanAssertify, a tool that converts the invariants reported by AGORA+ into executable JavaScript test assertions
compatible with the popular API platform Postman [12]. PostmanAssertify is open-source and publicly available
on GitHub [13].

• An empirical evaluation of AGORA+ in terms of precision and fault detection in 25 operations from 20 industrial
APIs (Section 4), including discovery of 32 real-world bugs (Section 5).

• A publicly available replication package including the source code and the data used in our work, as well as a
pre-configured virtual machine to ease reproducibility and replicability [15].

Section 6 addresses threats to validity, and Section 7 concludes.
A preliminary version of this work appeared in ISSTA 2023 [31] (Distinguished Artifact Award) and in the ACM

Student Research Competition [22, 29] (first prize winner in ESEC/FSE 2022, second prize winner in SRC Grand Finals
2023). This paper extends our previous work in several directions. First, we evaluated with 14 new operations from 13
industrial APIs (Section 4). Second, we introduced new heuristics that improve precision by 33% (Section 3.3). Third, we
created a new tool, PostmanAssertify, for the automated generation of executable assertions in JavaScript, specifically
through the generation of Postman collections, a popular tool among practitioners (Section 3.4).

2 BACKGROUND AND RELATEDWORK

This section reviews automated testing of REST APIs, test oracle generation, and dynamic invariant detection.

2.1 Automated Testing of REST APIs

Modern web APIs are typically compliant with the REpresentational State Transfer (REST) [51] architectural style and
are known as REST APIs [96]. REST APIs are usually composed of multiple RESTful web services, with each one of

Manuscript submitted to ACM

4 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

them implementing create, read, update, and/or delete (CRUD) operations on a resource (e.g., in the GitHub API [8],
each resource is a repository). These operations are typically invoked by sending HTTP requests to a Uniform Resource
Locator (URL) that represents a resource or a collection of resources.

REST APIs are commonly described using the OpenAPI Specification (OAS) [11] format (previously known as
Swagger), arguably the industry standard. An OAS specification documents operations in the API, including their input
parameters and responses. As an example, Listing 1 depicts an excerpt of the OAS specification of the “getAlbumTracks”
operation of the Spotify API [21]. The specification describes the HTTP method and the URI required to call the API
operation (lines 1–3), operation ID (line 4), input parameters (lines 5–20), and possible responses (lines 21–63). Listing 2
shows a response for the “getAlbumTracks” operation conforming to the specification.

Automated testing of REST APIs usually adopts a black-box approach [30, 33, 34, 44, 56, 57, 62, 69–74, 77, 79, 83,
92, 99, 103, 106, 107]. Given an OAS specification, these techniques automatically generate pseudo-random test cases
(sequences of HTTP requests) and test oracles (assertions on the HTTP responses). The approaches differ in the way
they generate API calls (i.e., test inputs) using techniques such as model-based testing [77, 83, 104], property-based
testing [62, 69, 97, 99], and constraint-based testing [81, 82]. Some methods focus on testing individual API operations
and generate single API requests, while others generate sequences of API calls for stateful testing [33, 44, 62, 71, 74, 103].
White-box approaches require access to the API source code and are less common than black-box approaches. Most
existing techniques utilize search algorithms to maximize failure detection and code coverage [32, 100, 113].

In terms of failure detection, generated test oracles are primarily limited to detecting API crashes (e.g., 500 status
codes) and violations of the API specification [32, 62, 69, 82, 103]. Other test oracles focus on detecting regressions [54, 57]
or adherence to best design practices [34, 36, 44, 102, 112]. However, all these approaches have limitations in detecting
problems that go beyond mere syntax. For example, existing approaches would ignore domain-specific assertions in
Listing 2, such as checking that the linked_from.uri response field should be a URL that contains the text of the
linked_from.id field, or that the size of the items response field should be less than or equal to the value of the
total response field. Generating such test oracles is the goal of AGORA+.

2.2 Test Oracle Generation

Automated test oracle generation techniques can be classified based on their inputs and their application domains.
Regarding their inputs, test oracles have been derived from source code [46, 63, 85, 105, 109], formal specifications [53, 66],
semi-structured documentation [38, 39, 58, 111], previous program executions [41, 42, 47, 65, 68, 86–88, 101], or
a combination of them. Application contexts include Java projects [38, 46, 86], machine learning programs [40],
databases [47] and cyber-physical systems [35], among others.

Other related techniques include metamorphic testing and regression testing. Metamorphic testing [92, 97–99] relies
on the manual identification of metamorphic relations among the inputs and outputs of two or more executions of the
program under test. Regression testing [52, 108] relies on previous versions of the software under test to confirm that a
change has not affected existing features.

Existing techniques for automated test oracle generation primarily operate at the method level and are tailored
to specific programming languages, mainly Java [38, 39, 41, 42, 46, 58, 63, 65, 68, 86–88, 101, 105, 109, 111]. These
techniques generate unit test assertions by leveraging information from the method under test, semi-structured
procedure specifications (e.g., Javadoc), unit test methods lacking assertions (test prefixes), or a combination of these.
Documentation-based approaches [38, 39, 58, 111] use variable names and dataflow analysis to infer test oracles, making
them unsuitable for black-box testing. Approaches that infer test oracles from previous program executions require
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 5

1 paths:
2 '/albums/{id}/tracks':
3 get:
4 operationId: 'getAlbumTracks'
5 parameters:
6 - name: id
7 description: 'The Spotify ID for the album'
8 in: path
9 required: true
10 type: string
11 - name: market
12 description: 'An ISO 3166-1 alpha-2 country code'
13 in: query
14 required: false
15 type: string
16 - name: limit
17 description: 'The maximum number of items to return'
18 in: query
19 required: false
20 type: integer
21 responses:
22 '200':
23 description: 'OK'
24 schema:
25 type: object
26 properties:
27 total:
28 type: integer
29 href:
30 type: string
31 items: # Array of objects
32 type: array
33 items:
34 type: object
35 properties:
36 artists: # Array of objects
37 type: array
38 items:
39 type: object
40 properties:
41 id:
42 type: string
43 name:
44 type: string
45 available_markets: # Array of strings
46 type: array
47 items:
48 type: string
49 id:
50 type: string
51 name:
52 type: string
53 explicit:
54 type: boolean
55 duration_ms:
56 type: integer
57 linked_from: # Nested object
58 type: object
59 properties:
60 id:
61 type: string
62 uri:
63 type: string

Listing 1. An excerpt of the getAlbumTracks operation of the Spotify API, expressed in OAS (OpenAPI Specification) format. Listing 2
shows a response.

generating valid and invalid instances of program states [86–88], usually generated through code mutation, or rely on
prior static analysis [42], a human in the loop [41, 68], or previously annotated false positives and false negatives [101]
to refine automatically generated assertions. Recent LLM-based techniques [46, 63, 105, 109] also focus on specific
programming languages and operate at the method level, making them not applicable to the domain of REST APIs.

A common approach for the generation of test oracles is through the detection of invariants. An invariant is a
property that is always satisfied at one or more points of the execution of a program [49]. For example, given a procedure
that receives an array and returns the same array with an additional element, an invariant could specify that the returned
array always has a greater size than the array provided as input, i.e., size(return.array[])>size(input.array[]).

Manuscript submitted to ACM

6 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

1 {
2 "total": 14,
3 "href": "https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES",
4 "items": [
5 {
6 "artists": [
7 {
8 "id": "2CvCyf1gEVhI0mX6aFXmVI",
9 "name": "Paul Simon"
10 },
11 {
12 "id": "70cRZdQywnSFp9pnc2WTCE",
13 "name": "Arthur Garfunkel"
14 }
15],
16 "available_markets": ["ES", "US", "JP"],
17 "id": "0gFvkiT2afIcJwNxXQ7W51",
18 "name": "Mrs. Robinson",
19 "explicit": false,
20 "duration_ms": 234346,
21 "linked_from": {
22 "id": "98cZPdKywnMGp8fnw2XTYU",
23 "uri": "https://spotify.com/artist/98cZPdKywnMGp8fnw2XTYU"
24 }
25 }
26]
27 }

Listing 2. Spotify API response in JSON format, for the request GET https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=
1&market=ES.

Invariants can serve as test oracles to determine the correctness of a program output. Invariants can be detected either
statically (analyzing the source code, without executing it) [45, 55] or dynamically (analyzing the behavior of a program
through multiple executions) [49, 50, 61, 76]. Statically detected invariants are usually less numerous and less specific
than those detected by dynamic techniques [48, 89, 90]. However, dynamic invariant detection techniques may result in
overfitting, especially if the analyzed executions lack variety. Since it is infeasible to run the program with all possible
inputs, dynamically detected invariants are referred to as likely invariants, until they are confirmed by a domain expert.
Likely invariants can be categorized based on where in the program execution they are observed. For instance, likely
preconditions apply to the state before a method or function is executed, while likely postconditions describe the state
after its completion. Both are specialized forms of likely invariants, scoped to specific program components such as
functions or methods. Similarly, loop invariants are properties that hold true before and after every iteration of a loop.

The automated detection of likely invariants has shown promising results in contexts such as Java programs [86],
relational databases [43], automated program repair [114], WS-BPEL composition testing [91], cyber-physical sys-
tems [28], and cloud-based [95] and distributed [60] systems. To the best of our knowledge, this is the first approach for
the automated detection of likely invariants in REST APIs. AGORA+ works on a black-box mode, where only the inputs
and outputs of the API under test are accessible. This makes our approach compatible with existing REST API testing
tools, regardless of how they are implemented, fostering its applicability in practice.

2.3 Daikon

Daikon [50] is an open-source tool that detects likely invariants in programs by monitoring test executions. This
monitoring process involves observing the program state at designated program points, initially considering all possible
invariants as valid. Those invariants that are not violated by any execution are reported as likely invariants. Daikon
operates by analyzing an instrumented version of a software execution, generated by a front-end or instrumenter. This
instrumentation produces a declaration file and a data trace file. The declaration file describes the variables that exist
Manuscript submitted to ACM

https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES
https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES

Test Oracle Generation for REST APIs 7

1 public Result computeSquare(int inputValue) {
2 return new Result(inputValue * inputValue);
3 }

Listing 3. Java computeSquare function.

1 ppt main.computeSquare(int):::EXIT1
2 ppt-type subexit
3 variable inputValue
4 var-kind variable
5 dec-type int
6 rep-type int
7 variable return
8 var-kind return
9 dec-type Result
10 rep-type hashcode
11 variable return.square
12 var-kind field square
13 enclosing-var return
14 dec-type int
15 rep-type int

Listing 4. Daikon declaration file.

1 main.computeSquare(int):::EXIT1
2 inputValue
3 10
4 1
5 return
6 1458849419
7 1
8 return.square
9 100
10 1

Listing 5. Daikon dtrace file.

1 === main.computeSquare(int):::EXIT
2 return.square >= 0
3 inputValue <= return.square

Listing 6. Likely invariants of computeSquare.

at each program point. The data trace file contains the values in each execution. Front-ends are available for various
programming languages and data formats, including Java, Perl, C++, and CSV [6].

Listing 3 shows a Java method that squares an input integer. For this method, a Daikon front-end generates an
ENTER program point for method entry and an EXIT program point for method exit. Listing 4 depicts the content of a
Daikon declaration file for the EXIT program point. As illustrated, the definition of the program point includes the
variables representing the input and output parameters to be observed. Each variable definition includes information
about its name, datatype in the original program (dec-type), datatype in the data trace file (rep-type), and whether
the variable is a property of another variable (enclosing-var), among others. In the example, Listing 4 contains the
int-type variable inputValue (input parameter), and the object-type variable return, containing the integer field
return.square (method output).

Listing 5 shows the data trace file of one execution of the EXIT program point. For each variable, the data trace
contains its name, the value observed in the program execution, and the modified bit. This bit specifies whether a
variable value has been assigned or not since the last time it was observed. After processing these files, assuming a
larger data trace file, Daikon would return a set of invariants like the one presented in Listing 6.

Manuscript submitted to ACM

8 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

3 AGORA+

Figure 1 overviews AGORA+, our approach for the automated generation of test oracles for REST APIs. At the core of
the approach is Beet1, a novel Daikon front-end. Beet receives three inputs: 1) the OAS specification of the API under
test, 2) a set of API requests, and 3) the corresponding API responses. Beet returns a declaration file (describing the
format of the API operation inputs and outputs) and a data trace file (specifying the values assigned to each input
parameter and response field in each API call). This instrumentation is then processed by our customized version of
Daikon, resulting in a set of likely invariants that, once confirmed by developers, can be used as test oracles. Optionally,
these confirmed invariants can be used as input to PostmanAssertify, which generates a Postman collection with the
invariants implemented as executable assertions in JavaScript.

Beet

Declaration file

Data trace file

Modified version
of Daikon Likely

invariants
API

requests + responses
(CSV)

{...}

OAS Specification

PostmanAssertify Postman
collection

Fig. 1. Workflow of AGORA+.

AGORA+ works at the operation level, that is, it learns invariants from API requests testing individual API operations,
as this is the most basic and common testing practice [30, 69, 75, 81–84, 99]. In AGORA+, the detected likely invariants
fall into two categories: likely preconditions, which are properties satisfied by the input parameters of an operation,
and likely postconditions, which are properties consistently satisfied by the API responses. Learning invariants for
sequences of API calls (e.g., creating a resource, then updating it, then deleting it) could be implemented in a similar
way and remains for future work. AGORA+ currently supports JSON as the de facto standard data format. Supporting
other languages should be straightforward using existing converters, e.g., XML to JSON.

We now describe the Beet front-end, the types of invariants currently supported, the heuristics applied by AGORA+
to minimize the number of false positives reported, and the tool PostmanAssertify.

3.1 Beet: A Daikon front-end for REST APIs

This section explains how Beet generates a declaration and a data trace file from an OAS specification and a set of API
requests and responses.

3.1.1 Declarations. The declaration files provide a description of the inputs and outputs for each API operation.
Table 1 summarizes how these files are generated from the information in the API specification. For each operation, an
ENTER program point is created, followed by the definition of input parameters, if any. These input parameters are
defined as a single input variable representing the whole input with as many properties/fields as input parameters
(input.<paramName>). Similarly, an EXIT program point is created for each operation, including an identical definition
of the input parameters, a return variable representing the whole output, and as many properties/fields of the return
variable as response fields (return.<paramName>). The value of <primitiveType> in Table 1 can be java.lang.String,
int, double, or boolean. Variables of type object are represented using hash codes.
1Daikon is an Asian radish. Previous Daikon front-ends have adopted the name of root vegetables, such as Celeriac, Chicory, and Takuan [6]. We decided
to follow this convention.

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 9

Table 1. Daikon declaration file format for API Requests and Responses.
A
PI

op
er
at
io
n ppt <operationName>&<statusCode>():::ENTER

ppt-type enter
variable input
var-kind variable
dec-type <operationName>&Input
rep-type hashcode A

PI
op

er
at
io
n

ppt <operationName>&<statusCode>():::EXIT<exitNumber>
ppt-type subexit
variable input
-- Input variables --
variable return
var-kind return
dec-type <ppt-name>&Output&<statusCode>
rep-type hashcode

A
PI

R
eq

ue
st

In
pu

tp
ar
am

variable input.<parentVariable>.<paramName>
var-kind field <paramName>
enclosing-var input.<parentVariable>
dec-type <primitiveType> | <ppt-name>&Input&<paramName>
rep-type <primitiveType> | hashcode

A
PI

R
es
po

ns
e

Re
sp
on

se
fie

ld variable return.<parentVariable>.<fieldName>
var-kind field <fieldName>
enclosing-var return.<parentVariable>
dec-type <primitiveType> | <ppt-name>&Output&<fieldName>
rep-type <primitiveType> | hashcode

In
pu

ta
rr
ay

variable input.<parentVariable>.<paramName>
var-kind field <paramName>
enclosing-var input.<parentVariable>
dec-type <primitiveType>[] | <paramName>[]
rep-type hashcode

variable input.<parentVariable>.<paramName>[..]
var-kind array
enclosing-var input.<parentVariable>.<paramName>
array 1
dec-type <primitiveType>[] | <paramName>[]
rep-type <primitiveType>[] | hashcode[]

Re
sp
on

se
ar
ra
y

variable return.<parentVariable>.<fieldName>
var-kind field <fieldName>
enclosing-var return.<parentVariable>
dec-type <primitiveType>[] | <fieldName>[]
rep-type hashcode

variable return.<parentVariable>.<fieldName>[..]
var-kind array
enclosing-var return.<parentVariable>.<fieldName>
array 1
dec-type <primitiveType>[] | <fieldName>[]
rep-type <primitiveType>[] | hashcode[]

GET https://api.spotify.com/albums/{id}/tracks?limit={limit}&market={market}

(a) API request

1 ppt getAlbumTracks&200():::ENTER
2 ppt-type enter
3 variable input
4 var-kind variable
5 dec-type getAlbumTracks&Input
6 rep-type hashcode
7 variable input.id
8 var-kind field id
9 enclosing-var input
10 dec-type java.lang.String
11 rep-type java.lang.String
12 variable input.market
13 var-kind field market
14 enclosing-var input
15 dec-type java.lang.String
16 rep-type java.lang.String
17 variable input.limit
18 var-kind field limit
19 enclosing-var input
20 dec-type int
21 rep-type int

(b) Declaration file

Listing 7. ENTER program point of an API operation.

Two cases require special consideration: JSON objects and arrays of objects. JSON objects are flattened and each
property is treated as a separate parameter. On the other hand, in Daikon, the elements of an array of objects can only
be specified using their hashcode, limiting the types of invariants that can be identified to changes in the array. Unlike
JSON objects, arrays of objects cannot be flattened by creating additional entries in the EXIT with indexed positions (e.g.,
return.items[1].name) because the number of array elements varies across responses, and the declaration file cannot
dynamically accommodate a changing number of variable entries. Even if such flattening were feasible, comparing all

Manuscript submitted to ACM

10 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

1 responses:
2 "200":
3 description: "OK"
4 schema:
5 type: object
6 properties:
7 total:
8 type: integer
9 href:
10 type: string
11 items:
12 type: array
13 items:
14 type: object
15 properties:
16 artists:
17 type: array
18 items:
19 type: object
20 properties:
21 id:
22 type: string
23 name:
24 type: string
25 available_markets:
26 type: array
27 items:
28 type: string
29 ...

(a) YAML response schema

1ppt getAlbumTracks&200():::EXIT1
2ppt-type subexit
3variable input
4... // variables from the entry point are repeated here
5variable return
6var-kind return
7dec-type getAlbumTracks&Output&200
8rep-type hashcode
9variable return.total
10var-kind field total
11enclosing-var return
12dec-type int
13rep-type int
14variable return.href
15var-kind field href
16enclosing-var return
17dec-type java.lang.String
18rep-type java.lang.String
19variable return.items
20var-kind field items
21enclosing-var return
22dec-type items[]
23rep-type hashcode
24variable return.items[..]
25var-kind array
26enclosing-var return.items
27array 1
28dec-type items[]
29rep-type hashcode[]

(b) Declaration file

Listing 8. EXIT program point of an API operation.

properties across all elements in nested arrays would lead to a combinatorial explosion of reported invariants, many of
which would be false positives or irrelevant, while also incurring a substantial performance overhead. To support more
informative array-related output invariants, Beet implements a recursive strategy by creating a new EXIT2 program
point (that we define as a new nesting level) for each distinct array element, describing its properties as independent
response fields.

As an example, Listings 7 and 8 present the declarations of the ENTER (i.e., API request) and EXIT (i.e., API response)
program points for the “getAlbumTracks” operation of the Spotify API (Listing 1). The “&” in the program point
names has no semantic significance to Daikon. In Listing 7, the definition of the ENTER program point is followed by
the definition of the input parameters. Specifically, an input variable representing the entire input, which has three
properties, each representing a distinct input parameter (input.id, input.market and input.limit). Similarly, in
Listing 8, the definition of the EXIT program point is followed by the definition of the input parameters (omitted for
brevity), a return variable representing the entire output, and as many properties of the return variable as response
fields (e.g., return.total and return.href). The response includes an array of objects, items, including the set of
music albums matching the search criteria. This is transformed into two distinct variables, one of type object (hashcode)
that represent the whole array (lines 19–23), and another of type array containing the hashcodes of the array elements
(lines 24–29). Besides this, an additional EXIT program point is created—a new nesting level—defining the properties of
each array item (i.e., Spotify album), as shown in Listing 9. The left part of the Listing also includes the corresponding
fragment of the response format being represented. The details of the variables of type string (return.id, return.name
and return.linked_from.uri), integer (return.duration_ms), boolean (return.explicit) and array of objects
(return.artists) have been omitted for brevity.

The use of nested structures improves the relevance of reported invariants and avoids performance overheads. Placing
all response fields as variables in a single program point would likely cause a combinatorial explosion of reported

2ENTER and EXIT program points must be defined in pairs in Daikon. Each EXIT program point is paired with a renamed copy of the ENTER program
point.

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 11

1 responses:
2 "200":
3 description: "OK"
4 schema:
5 type: object
6 properties:
7 total:
8 type: integer
9 href:
10 type: string
11 items:
12 type: array
13 items:
14 type: object
15 properties:
16 artists:
17 type: array
18 items:
19 type: object
20 properties:
21 id:
22 type: string
23 name:
24 type: string
25 available_markets:
26 type: array
27 items:
28 type: string
29 id:
30 type: string
31 name:
32 type: string
33 explicit:
34 type: boolean
35 duration_ms:
36 type: integer
37 linked_from:
38 type: object
39 properties:
40 id:
41 type: string
42 uri:
43 type: string

(a) YAML response schema

1ppt getAlbumTracks&200&items():::EXIT2
2ppt-type subexit
3variable input
4... // variables from the entry point are repeated here
5variable return
6var-kind return
7dec-type getAlbumTracks&Output&200&items
8rep-type hashcode
9variable return.artists
10...
11variable return.artists[..]
12...
13variable return.available_markets
14var-kind field available_markets
15enclosing-var return
16dec-type java.lang.String[]
17rep-type hashcode
18variable return.available_markets[..]
19var-kind array
20enclosing-var return.available_markets
21array 1
22dec-type java.lang.String[]
23rep-type java.lang.String[]
24variable return.id
25...
26variable return.name
27...
28variable return.explicit
29...
30variable return.duration_ms
31...
32variable return.linked_from
33var-kind field linked_from
34enclosing-var return
35dec-type getAlbumTracks&Output&200&items&linked_from
36rep-type hashcode
37variable return.linked_from.id
38var-kind field id
39enclosing-var return.linked_from
40dec-type java.lang.String
41rep-type java.lang.String
42variable return.linked_from.uri
43...

(b) Declaration file

Listing 9. Second EXIT nesting level.

invariants by comparing variables that are potentially unrelated, leading to false positives and irrelevant results. By
using nesting, variables are assigned scopes based on their nesting level, preventing unnecessary comparisons and
improving efficiency.

3.1.2 Data Traces. Data trace files contain the actual input and output values observed during the execution of the
API. Each data trace record must have the same variables as the corresponding declaration. Listing 10 shows the data
trace file corresponding to a request to the “getAlbumTracks” operation of the Spotify API with input parameters
id=“4Em5W5HgYEvhpc”, market=“ES” and limit=1, along with the API request being represented. Analogously,
Listing 11 depicts, along with the fragment of the response in JSON format being represented, the main data trace
file of the corresponding response, containing, among other properties, an array of objects. For each array item, Beet
generates a new pair of trace files (i.e., an ENTER and an EXIT) with the values of each object (i.e., Spotify Album),
omitted for brevity.

Beet is implemented in Java and is open-source. We refer the reader to GitHub for a more exhaustive description of
the instrumentation process and additional examples [1].

3.2 Invariant Definition

This section describes the changes made to Daikon for enabling the detection of likely invariants in REST APIs. In
order to identify classes of invariants that could be used as effective test oracles, we used a benchmark of 40 APIs

Manuscript submitted to ACM

12 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

GET https://api.spotify.com/albums/4Em5W5HgYEvhpc/tracks?limit=1&market=ES

(a) API request

1 getAlbumTracks&200():::ENTER
2 input
3 1242334637
4 1
5 input.id
6 "4Em5W5HgYEvhpc"
7 1
8 input.market
9 "ES"
10 1
11 input.limit
12 1
13 1

(b) Data trace file

Listing 10. ENTER data trace file.

1 {
2 "total": 14,
3 "href": "https://api.spotify.com/albums/4Em...",
4 "items": [
5 {
6 "artists": [
7 {
8 "id": "2CvCyf1gEVhI0mX6aFXmVI",
9 "name": "Paul Simon"
10 },
11 {
12 "id": "70cRZdQywnSFp9pnc2WTCE",
13 "name": "Arthur Garfunkel"
14 }
15],
16 "available_markets": ["ES", "US", "JP"],
17 "id": "0gFvkiT2afIcJwNxXQ7W51",
18 ...

(a) API response in JSON format

1getAlbumTracks&200():::EXIT1
2input
3...
4return
52043815652
61
7return.total
814
91
10return.href
11"https://api.spotify.com/albums/4Em..."
121
13return.items
141534143414
151
16return.items[..]
17[313805079]
181

(b) Data trace file

Listing 11. One instance of an EXIT program point in a data trace file.

(702 operations) from the RapidAPI repository [14] that some of the authors collected systematically for a recent
publication [30]. None of the APIs of this benchmark were used for the evaluation of the approach, in order to avoid
bias. This dataset contains real-world APIs which spam multiple application domains, such as finance, sports, travel,
and visual recognition, among many others.

We followed a systematic procedure to identify the types of invariants present in REST APIs. For each API operation,
we began by reviewing its name and description, as well as analyzing its input parameters, to understand its intended
behavior and usage. Next, we examined each response field to identify invariant templates to add (i.e., define a new
template), enable or disable, as follows:

(1) Unary invariants. These involve a single variable, such as the “scalar.LowerBound” invariant, which specifies
the minimum allowable value for a numerical value. For each response field, we assessed whether existing
Daikon invariants adequately described its characteristics and were sufficiently generic for application across
different APIs. When gaps were identified, new invariants were defined. This resulted in the addition of 22 new
invariants and disabling 6 invariants.

(2) Binary invariants. These involve two variables, such as “twoString.StringEqual”, which enforces that two string
variables always have the same value. We analyzed potential relationships between the response field under
analysis, input parameters and the remaining response fields. This process led to enabling 9 previously disabled

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 13

invariants and disabling 27 invariants that were prone to false positives or combinatorial explosions of reported
invariants.

(3) Ternary invariants. These involve three variables, such as identifying linear relationships among numerical
variables. A similar analysis as the one conducted for binary invariants was performed for ternary relationships,
but no meaningful logical relationships involving three variables were observed in the APIs. Consequently,
existing Daikon ternary invariants were disabled as they were not observed in any of the APIs.

Overall, we implemented 22 new types of invariants, disabled 35 default Daikon invariants, and activated 9 invariants
disabled by default in Daikon. Table 2 lists all the added, disabled, and enabled invariants in our modified version of
Daikon. In the context of naming invariants, the term “sequence” refers to array variables, while “scalar” refers to
numerical variables, booleans (0 or 1) and objects (represented as hashcodes). The new invariants detect string patterns
such as URLs, dates, and length constraints. The disabled invariants would most likely (according to our analysis of the
input and output format of the benchmark operations) provide irrelevant or misleading information in our context,
such as comparing the scalar value of strings or linear relations between numerical variables. Finally, we activated 9
invariants related to detecting subsets and supersets when comparing array variables (e.g., x[] is a subsequence of

y[]) and detecting substring relations between string variables (e.g., input.id is a substring of return.href).
Overall, our customized version of Daikon supports 106 types of invariants for REST APIs, classified into five categories:

• Arithmetic comparisons (48 invariants). Specify numerical bounds (e.g., size(return.artists[]) >= 1) and
relations between numerical fields (e.g., input.limit >= size(return.items[])).

• Array properties (23 invariants). Represent comparisons between arrays, such as subsets, supersets, or fields that are
always member of an array (e.g., return.hotel.hotelId in input.hotelIds[]).

• Specific formats (22 invariants). Specify restrictions regarding the expected format (e.g., return.href is Url) or
length (e.g., LENGTH(return.id)==22) of string fields.

• Specific values (9 invariants). Restrict the possible values of fields (e.g., return.visibility one of {"public",

"private"}).
• String comparisons (4 invariants). Specify relations between string fields, such as equality (e.g., input.name ==

return.name) or substrings (e.g., input.id is a substring of return.href).

We refer the reader to the AGORA+ GitHub repository [1] for a more detailed description of each type of invariant,
including examples. More types of invariants could be considered in the future. Listing 12 shows some of the likely
invariants inferred by Daikon for the “getAlbumTracks” operation of the Spotify API used as running example.

3.3 Minimizing false positives

In the previous version of our approach [31], invariants of the arithmetic comparison category caused of 3 out of
every 4 false positives. Most false positives were invariants comparing two unrelated output properties. For example,
the invariant return.duration_ms > size(return.artists[]) states that the duration of a song in milliseconds
should always be greater than the number of artists in the song. While this may be true in most cases, it does not
characterize the API specification and we consider it a false positive. Finding counterexamples to automatically rule out
these false positives is extremely unlikely, and the number of reported false positives can become unbearable if the API
has multiple numerical response fields.

To address this, AGORA+ incorporates a novel heuristic to reduce false positives caused by arithmetic comparisons,
leveraging the following observation: parameters with different value ranges are unlikely to be related. For example,

Manuscript submitted to ACM

14 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

1 === getAlbumTracks&200():::ENTER
2 LENGTH(input.id)==14
3 input.limit >= 1
4 LENGTH(input.market)==2
5 === getAlbumTracks&200():::EXIT
6 return.href is Url
7 input.limit >= size(return.items[])
8 return.total >= size(return.items[])
9 return.total >= 1
10 input.market is a substring of return.href
11 input.id is a substring of return.href
12 === getAlbumTracks&200&items():::ENTER
13 ...
14 === getAlbumTracks&200&items():::EXIT
15 size(return.artists[]) >= 1
16 All the elements of return.available_markets[] have LENGTH=2
17 input.market in return.available_markets[]
18 LENGTH(return.id)==22
19 LENGTH(return.linked_from.id)==22
20 return.linked_from.uri is Url
21 LENGTH(return.linked_from.uri)==54
22 return.linked_from.id is a substring of return.linked_from.uri
23 return.duration_ms > size(return.artists[])
24 return.duration_ms > size(return.available_markets[])
25 === getAlbumTracks&200&items&artists():::ENTER
26 ...
27 === getAlbumTracks&200&items&artists():::EXIT
28 LENGTH(return.id)==22

Listing 12. Invariants detected in the “getAlbumTracks” operation of the Spotify API.

Table 2. Summary of modifications performed on Daikon. The strike-through invariants had to be disabled during our evaluation to
avoid a combinatorial explosion of reported false positives.

Added invariants
(22)

Unary
(22)

string.IsUrl stringsequence.ElementsAreUrl
string.FixedLengthString stringsequence.FixedLengthString
string.IsNumeric stringsequence.ElementsAreNumeric
string.IsEmail stringsequence.ElementsAreEmail
string.IsDateYYYYMMDD stringsequence.ElementsAreDateYYYYMMDD
string.IsDateDDMMYYYY stringsequence.ElementsAreDateDDMMYYYY
string.IsDateMMDDYYYY stringsequence.ElementsAreDateMMDDYYYY
string.IsTime stringsequence.ElementsAreTime
string.IsTimeWithSeconds stringsequence.ElementsAreTimeWithSeconds
string.IsTimeAMPM stringsequence.ElementsAreTimeAMPM
string.IsTimestamp stringsequence.ElementsAreTimestamp

Disabled invariants
(35)

Unary
(6)

scalar.NonZero sequence.EltNonZero
scalar.NonZeroFloat sequence.EltNonZeroFloat
scalar.RangeInt.PowerOfTwo sequence.EltRangeInt.PowerOfTwo

Binary
(27)

twoScalar.IntNonEqual twoSequence.PairwiseStringGreaterThan
twoScalar.FloatNonEqual twoSequence.PairwiseStringLessEqual
twoScalar.LinearBinary twoSequence.PairwiseStringGreaterEqual
twoScalar.LinearBinaryFloat twoScalar.NumericInt.Divides
twoString.StringNonEqual twoScalar.NumericInt.Square
twoString.StringLessThan twoScalar.NumericFloat.Divides
twoString.StringGreaterThan twoScalar.NumericFloat.Square
twoString.StringLessEqual twoSequence.PairwiseNumericInt.Divides
twoString.StringGreaterEqual twoSequence.PairwiseNumericInt.Square
twoSequence.SeqSeqStringLessThan twoSequence.PairwiseNumericFloat.Divides
twoSequence.SeqSeqStringGreaterThan twoSequence.PairwiseNumericFloat.Square
twoSequence.SeqSeqStringLessEqual twoSequence.PairwiseLinearBinary
twoSequence.SeqSeqStringGreaterEqual twoSequence.PairwiseLinearBinaryFloat
twoSequence.PairwiseStringLessThan

Ternary
(2) threeScalar.LinearTernary LinearTernaryFloat

Enabled invariants
(9)

Binary
(9)

twoString.StdString.SubString twoSequence.SuperSequence
twoSequence.SubSequence twoSequence.SuperSequenceFloat
twoSequence.SubSequenceFloat twoSequence.SuperSet
twoSequence.SubSet twoSequence.SuperSetFloat
twoSequence.SubSetFloat

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 15

the duration of a song typically spans thousands of milliseconds (e.g., more than 30K ms), whereas the number of artists
on a song may vary from 1 to around 10. Our heuristic evaluates the observed value ranges for variables involved in
arithmetic inequalities (e.g., x<y, x<=y, x>y, x>=y). Specifically, it discards invariants if the maximum observed value of
one variable (e.g., 10 artists) is less than the minimum observed value of the other variable (e.g., 30K ms). For example,
the invariant return.duration_ms > size(return.artists[]) would be discarded if the respective value ranges
do not overlap, such as duration of 30K-300K ms versus 1–10 artists. When value ranges overlap, the heuristic allows
the invariant to be retained, as the relationship might be meaningful. To implement this heuristic, we modified 32
arithmetic comparison invariants in Daikon, ensuring they are not reported if there is no overlap between the value
ranges of the two variables being compared. This heuristic enhances the relevance of the invariants generated by
Daikon and has potential for application in the detection of invariants in other domains.

3.4 PostmanAssertify: Automated generation of test assertions

This section presents PostmanAssertify, a tool that converts the invariants reported by AGORA+ into executable
assertions in JavaScript that are compatible with Postman. Postman [12] is a widely used API development and testing
platform that offers a graphical interface to create, send, and analyze HTTP requests to REST APIs. One of its standout
features is the use of collections, which allow developers to group and organize API requests. This enables developers
to run entire suites of tests with a single click.

Fig. 2. Postman collection generated by PostmanAssertify.
Manuscript submitted to ACM

16 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

1 // Getting value of the id path parameter
2 input_id = pm.request.url.path[2];
3 if (input_id != null) {
4 input_id = decodeURIComponent(input_id);
5 }
6
7 // Getting value of the market query parameter
8 input_market = pm.request.url.query.get("market");
9 if (input_market != null) {
10 input_market = decodeURIComponent(input_market);
11 }
12
13 // Getting value of the limit query parameter
14 input_limit = pm.request.url.query.get("limit");
15 if (input_limit != null) {
16 input_limit = decodeURIComponent(input_limit);
17 input_limit = parseInt(input_limit);
18 }
19
20 valuesToConsiderAsNull = [];
21
22 // Base nesting level (getAlbumTracks&200 program point)
23 response = pm.response.json();
24
25 pm.test("input.limit >= size(return.items[])", () => {
26 // Getting value of variable: return_items_size_array
27 return_items_size_array = response["items"];
28 if (return_items_size_array != null) {
29 return_items_size_array = return_items_size_array.length;
30 }
31
32 if ((input_limit != null) && (!valuesToConsiderAsNull.includes(input_limit)) &&
33 (return_items_size_array != null) && (!valuesToConsiderAsNull.includes(return_items_size_array))) {
34 pm.expect(input_limit).to.be.at.least(return_items_size_array);
35 }
36 })
37
38 // Second nesting level (getAlbumTracks&200&items program point)
39 response_items = response["items"]
40 if (response_items != null) {
41 for (response_items_index in response_items) {
42 response_items_element = response_items[response_items_index];
43
44 pm.test("LENGTH(return.id)==22", () => {
45 // Getting value of variable: return_id
46 return_id = response_items_element["id"];
47
48 if ((return_id != null) && (!valuesToConsiderAsNull.includes(return_id))) {
49 pm.expect(return_id).to.have.length(22);
50 }
51 })
52
53 } // Closing for response_items
54 } // Closing if response_items

Listing 13. Part of the Postman test script generated by PostmanAssertify for the Spotify “getAlbumTracks” operation.

PostmanAssertify receives the API specification and the CSV file containing the set of confirmed invariants generated
by AGORA+ as inputs. PostmanAssertify returns a Postman collection, including a sample API request for each status
code of the API operations under test and—attached to each request—all the invariants as executable test assertions.

Figure 2 shows an example of a Postman collection generated by PostmanAssertify running on the Postman desktop
application. The collection contains a request for each response code of every API operation where AGORA+ has
detected invariants. These operations are listed in the directories on the left sidebar of Figure 2. Each request, as shown
in the right pane of Figure 2, contains the following:

• The URI of the API operation with the input parameters configured.
• A test script written in JavaScript using the Chai library [2, 26].
• Assertions for all the confirmed invariants implemented in the test script.

Every time this script is executed, Postman generates a report such as the one shown in the bottom pane of Figure 2,
in which it indicates whether each assertion passed or failed, with an explanatory message in case of failure. The
collection reports can be exported in JSON format for further analysis.
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 17

Listing 13 contains a snippet of the test script generated by PostmanAssertify for the Spotify “getAlbumTracks”
operation used as running example. For the sake of brevity, the test script only contains the assertions gener-
ated for two of the invariants: input.limit >= size(return.items[]), reported at the base nesting level; and
LENGTH(return.id)==22, reported at the items nesting level.

PostmanAssertify first generates the code that initializes the variables storing the values of the API request input
parameters (lines 1–18), the special values to consider as null (line 20), and the returned API response (line 23). Then, it
generates the code containing all the test cases (one per confirmed invariant) of the base nesting level (lines 25–36).
Each test case starts by obtaining the values of the variables involved in the assertions (lines 26–30), which can be
either input parameters of properties of the response. Then, if none of the variables is null (lines 32–33), the assertion is
executed (line 34).

After creating the tests of the base nesting level, PostmanAssertify generates the code for accessing the base variable
of the subsequent nesting level (lines 38–42), and all the test cases of this new nesting level, if any (lines 44–51). This
process is iteratively repeated for all the subsequent nesting levels.

To implement the Postman assertions (lines 34 and 49), we extended Daikon with a new output format [5] so it reports
the invariants supported by AGORA+ as assertions of the Chai JS library. PostmanAssertify has been implemented in
Java and is publicly available on GitHub [13].

4 EVALUATION

We aim to answer the following research questions:
RQ1: How effective is AGORA+ in generating test oracles? We measure the precision of AGORA+ in generating

invariants that properly model the expected API behavior.
RQ2: How does the size of the input dataset affect the performance of AGORA+? The precision and the number of

detected invariants usually depends on the quality and diversity of the input datasets (i.e., API requests and responses).
RQ3: How effective are the generated test oracles in revealing failures? The final goal is generating test oracles that

can be used during testing to identify erroneous responses caused by defects. Thus, we investigate the effectiveness of
the generated oracles for detecting failures in REST APIs.

4.1 Experimental Data

For our experiments, we used a set of 25 operations from 20 industrial APIs (Table 3) tested by previous authors [30,
83, 84, 99]. All these APIs are freely accessible. Our replication package [15] provides detailed information on the
specific authentication requirements for each API. The OAS specification of the APIs were obtained from their official
websites. For those APIs that do not provide access to the official specification, we either generated them manually
(Foursquare, iTunes, Ohsome, OMDb, RESTCountries, and Yelp) or used the version available in APIs.guru [16] (Spotify,
Stripe, Vimeo, and YouTube), modifying them according to the latest version of the web docs. Some of the existing
specifications were either incorrect (parameters of type array defined as strings) or incomplete (missing response fields).
We manually fixed those specifications to ensure that Beet could process them. This process was carried out using a
semi-automated process with RESTest, which leverages the Atlassian OAS syntactic validator [23]. During test case
generation, RESTest identified missing response fields, which were then manually added to the OAS in an iterative
process that took only a few minutes per API operation.

The Vimeo API offers various authentication scopes [24], including public (exclusively returns public video data),
and private (grants access to private video data, provided the user is the video owner). We opted for the public scope

Manuscript submitted to ACM

18 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

due to our limited access to private video metadata. When using the public scope, the API does not return certain
response fields that are exclusive to the private scope, and therefore AGORA+ reports that these fields are always null.
We removed these fields from the OAS specification to avoid bloating the results.

For each operation, the RESTest [82] framework generated and executed API calls until obtaining 10K valid API calls
per operation, at least 9K of which must be non-empty results (i.e., the result is not a zero-length list), generating 250K
calls in total. According to REST best practices [96], we consider an API response as valid if it is labeled with a 2XX
HTTP status code. The OMDb API does not adhere to REST best practices, returning a 200 response containing the
error response field when the user provides invalid data. For this API, we consider as valid those API responses that
do not contain this field.

4.1.1 Input data generation. The invariants detected by AGORA+ largely depend on the diversity of the API requests
provided as input. To foster such diversity, we configured RESTest to use specific data generation strategies for each
of the input parameters of the API operations of our study. For each one of the 224 different input parameters of the
operations of our analysis, we used one of the following strategies:

• Manually created data dictionaries (31.3% of the parameters). Collection of input values created manually. For
example, a list of database IDs (such as Spotify Album IDs), country codes or city names, among others.

• Enum values (19.2% of the parameters). List of all the possible values accepted for a specific input parameter (usually
specified in the documentation). For example, when creating a GitHub repository, the value of the visibility
parameter can only be either “public” or “private”.

• Numbers (19.2% of the parameters). Randomly generates a number within minimum and maximum bounds. This
strategy is used, for instance, in pagination parameters.

• English words (17% of the parameters). Randomly generates a word or sequence of words using the extJWNL
(Extended Java WordNet Library) Java library [7]. Used for free text fields, such as when setting the name of a
Spotify playlist.

• Booleans (10.3% of the parameters). Randomly generates either “true” or “false”.
• Dates (3% of the parameters). Randomly generates a string following a specific date format. The generated date is
within a start and end date.

When manually creating the data dictionaries, we followed current practices and selected values based on an analysis
of the API specification and documentation. For instance, for the location parameter of the Yelp API, we created a list
of cities located in different continents. Our replication package [15] contains the RESTest configuration files and the
data dictionaries used for generating the test cases.

4.2 Experiment 1: Test Oracle Generation

This experiment answers RQ1 (precision of the approach) and RQ2 (impact of the dataset size) by evaluating the
effectiveness of AGORA+ in generating test oracles.

4.2.1 Experimental Setup. For each API operation, we randomly divided the 10K automatically-generated requests into
10 random subsets of each of the sizes 50, 100, 500, and 1K requests. We report the performance in terms of average
precision (i.e., 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)) and average number of reported invariants across the 10 runs. For each
run, the inferred invariants were classified as true positives or false positives based on manual analysis. The cost of
manually verifying invariants was minimal for most cases, as they could be confirmed within seconds from the name
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 19

and the description included in the API specification (e.g., a field named image_url is clearly expected to be a URL) or
by analyzing the API documentation, which typically specifies the expected format or constraints of response fields
in natural language. If the documentation was not clear enough, we consulted the API providers about the expected
API behavior. For instance, in the RESTCountries API, we noticed that one of the idds (international dialing code) of
Canada was an empty string (“”), instead of a numerical code. Upon seeking clarification, the API providers confirmed
that this behavior was intentional [17]. A true positive invariant describes a property of the output that should always
hold; they are valid test oracles. A false positive reflects a pattern that has been observed in all the API requests and
responses provided as input, but does not represent the expected behavior of the API. For example, AGORA+ may
report that the visibility of a GitHub repository is always “public” (return.visibility == “public”), because it
never observes the “private” value, or that the number of stars in a repository is always greater than its number of forks
(return.stargazers_count > return.forks_counts). Although these were true for all the test cases used to infer
the invariants, they do not represent the intended behaviour of the API, and therefore they are false positives. As part
of our analysis, we measured the proportion of reported true positives and false positives of each one of the invariant
categories presented in Section 3.2.

Daikon also detects invariants among input parameters (i.e., likely preconditions in ENTER program points). These
invariants can offer insights about the API behavior regarding input parameter values. For example, they may report
that all the supported values of an input parameter have been used in at least one request that returned a valid
response (e.g., input.direction one of { “asc”, “desc” }) or that the numerical values are within a valid range
(e.g., input.limit >= 1). A violation of these invariants or an incomplete version of them could reveal either a
limitation in the test suite used as input for AGORA+ or a bug in the API implementation. For example, the invariant
input.direction == “asc” (an incomplete version of input.direction one of { “asc”, “desc” }) reveals
that there are no API responses for requests using the “desc” value for the direction parameter. This could mean
either that the test suite is not diverse enough or that there are no valid responses when this input parameter value is
used due to a bug in the API implementation. However, invariants about inputs do not provide information about the
output and hence we did not use them to calculate precision, focusing only on likely postconditions.

We compared the effectiveness of AGORA+ against the default version of Daikon and the previous version of our
approach, AGORA [31]. AGORA supports the same invariants as AGORA+, but it does not apply the heuristic presented
in Section 3.3 for reducing false positives. In all cases, our novel front-end, Beet, transformed API specifications, requests,
and responses into inputs for Daikon. Our preliminary experiments revealed that 13 of Daikon default invariants resulted
in a combinatorial explosion of string comparisons and a high number of false positives. For a fair comparison, we
disabled these problematic invariants in the default version of Daikon used as baseline, as detailed in our supplementary
material [15]. These disabled invariants are strike-through in Table 2.

We compared the performance of these three approaches in terms of precision. We do not compare them in terms
of recall due to the large number of response fields returned by many of the API operations (up to several hundreds).
Generating a ground truth for all the supported invariants would require manually annotating a dataset of up to tens of
thousands of invariants per API operation.

The experiment was performed on a laptop equipped with Intel i7-11800H @2.30GHz, 32GB RAM, and 1TB SSD
running Windows 11 and Java 17.

4.2.2 Experimental Results.

Manuscript submitted to ACM

20 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

Table
3.

Test
oracle

generation.I=“N
um

ber
oflikely

invariants”,P=“Precision
(%

valid
test

oracles)”

50
A
PIcalls

100
A
PIcalls

500
A
PIcalls

1K
A
PIcalls

10K
A
PIcalls

D
aikon

A
G
O
R
A

A
G
O
R
A
+

D
aikon

A
G
O
R
A

A
G
O
R
A
+

D
aikon

A
G
O
R
A

A
G
O
R
A
+

D
aikon

A
G
O
R
A

A
G
O
R
A
+

D
aikon

A
G
O
R
A

A
G
O
R
A
+

A
PI-O

peration
I

P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

I
P
(%
)

A
m
adeusCitySearch-G

ETCities
34

84
34

97
32

100
38

84
37

94
33

100
41

80
38

93
33

99
41

80
38

93
34

98
39

85
37

95
33

100
A
m
adeusH

otel-getM
ultiH

otelO
ffers

132
17

121
54

120
55

131
18

121
56

120
57

118
21

115
62

114
62

113
23

110
66

110
66

99
26

107
68

107
68

D
eutschebahn-getStations

202
22

127
30

91
41

164
28

114
36

86
48

110
45

103
45

82
57

102
49

102
46

81
58

94
53

97
48

76
62

D
H
L-getLocation-finderV1Find-by-address

54
40

26
50

19
64

52
41

26
52

18
67

49
44

25
55

18
69

48
46

24
58

18
71

45
49

22
64

17
76

FD
IC-searchInstitutions

450
14

407
32

235
48

430
16

408
33

226
52

487
17

466
32

231
57

503
17

486
32

229
60

589
16

601
29

249
62

Foursquare-placeSearch
267

13
145

32
85

43
308

13
164

32
95

43
339

13
188

30
94

50
332

14
190

31
94

50
270

17
154

35
90

48
G
itH

ub-createO
rganizationRepository

83
94

200
97

194
99

81
96

199
98

193
100

81
96

199
98

193
100

80
96

198
98

192
100

80
96

198
98

192
100

G
itH

ub-getO
rganizationRepositories

44
40

149
86

139
92

42
43

146
88

138
93

39
46

147
89

140
94

39
46

149
89

142
92

38
47

148
89

142
93

G
itLab-getA

piV4ProjectsIdBadges
5

23
6

57
4

92
5

28
6

58
4

85
5

43
6

67
4

100
4

47
6

67
4

100
4

50
6

67
4

100
G
itLab-listProjectJobs

142
12

152
32

91
54

136
13

142
36

80
63

119
15

135
38

71
72

116
16

134
39

70
74

113
17

130
41

67
79

iTunes-search
120

12
98

30
54

54
127

12
101

32
57

56
121

14
93

36
54

62
118

14
88

38
50

66
111

17
78

44
44

77
LanguageTool-checkText

123
54

65
67

57
74

116
61

66
71

59
78

120
68

69
75

63
80

120
72

71
76

65
82

120
74

73
78

67
84

M
arvel-getCom

icIndividual
223

24
121

46
103

52
199

28
114

51
96

58
174

34
108

57
92

65
160

38
104

60
89

68
140

46
96

66
88

69
N
YTim

esBooks-G
ET_lists-form

at
44

62
44

68
43

70
42

70
40

77
40

78
35

86
34

89
34

89
34

87
34

90
34

90
34

88
32

91
32

91
O
hsom

e-elem
entsA

ggregation
11

81
18

88
15

99
11

82
18

89
15

100
11

82
17

88
15

100
11

82
17

88
15

100
11

82
17

88
15

100
O
M
D
B-byIdO

rTitle
7

55
17

87
16

92
7

56
16

91
16

97
7

54
16

92
15

98
7

54
16

92
15

98
7

57
16

94
15

100
O
M
D
B-bySearch

5
90

5
95

5
97

6
65

6
78

6
92

5
75

6
82

5
98

5
79

6
83

5
100

6
83

7
86

6
100

RESTCountries-v31ListO
fCodes

139
27

68
40

60
45

139
31

56
50

52
53

126
39

50
61

47
65

125
39

49
63

46
67

124
40

49
63

46
67

Spotify-createPlaylist
22

100
41

100
41

100
22

100
41

100
41

100
22

100
41

100
41

100
22

100
41

100
41

100
22

100
41

100
41

100
Spotify-getA

lbum
Tracks

48
43

65
83

59
92

47
45

67
86

61
94

43
49

66
88

60
97

42
50

66
88

60
98

41
54

66
89

60
98

Spotify-getA
rtistA

lbum
s

55
40

53
82

50
89

50
47

53
86

49
92

38
64

51
90

48
96

32
75

50
92

47
98

31
84

52
92

49
98

Stripe-PostProducts
58

67
41

83
31

99
58

67
42

83
31

100
58

67
42

83
32

98
58

67
42

83
31

99
64

61
40

88
31

100
Vim

eo-search_videos
548

39
344

55
287

66
546

41
349

56
295

66
524

46
349

59
299

69
508

50
343

61
295

71
514

53
330

66
286

76
Yelp-getBusinesses

68
25

33
36

23
52

59
29

32
37

21
56

49
35

25
48

14
85

45
37

24
51

13
91

41
39

22
50

12
92

YouTube-listVideos
218

33
181

62
122

73
224

34
192

61
118

78
230

36
198

64
121

85
230

36
200

64
121

86
201

42
196

66
123

86

T
O
TA

L
3100

31
2561

55
1975

68
3042

33
2557

57
1951

71
2953

36
2586

59
1921

76
2897

38
2587

60
1903

78
2838

40
2615

60
1892

80

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 21

50 100 500 1000 10000
0

20

40

60

80

100

2000

2200

2400

2600

2800

3000

Precision Daikon Number of invariants Daikon Precision AGORA Number of invariants AGORA
Precision AGORA+ Number of invariants AGORA+

Number of requests

P
re

ci
si

o
n
 (

%
)

N
u
m

b
er

 o
f
re

p
o
rt

ed
 i
n
va

ri
an

ts

Fig. 3. Precision and number of invariants reported, depending on the size of the input dataset.

RQ1: Effectiveness of the approach. Table 3 shows the results for each API operation, set of API requests size (50, 100,
500, 1K, 10K), and approach (AGORA+ vs. AGORA vs. default Daikon). The reported values for the random subsets of
50, 100, 500, and 1K requests represent the average precision and the average number of reported invariants across 10
runs. Figure 3 shows the evolution of the precision and the number of invariants reported by each approach when the
input test suite size increases.

Next, we analyze the results obtained from the entire dataset of 10K requests (RQ1), shown in the last two columns
of the table. The following section compares different sizes of the input dataset (RQ2).

When learning from the whole dataset (10K API requests), AGORA+ obtained a total precision of 80% (1506 out of
1892 invariants are valid test oracles), outperforming the precision of both AGORA (60%) and the default configuration
of Daikon (40%) by 33% and 100%, respectively. AGORA+ equaled or outperformed all the baselines in all the API
operations.

The precision achieved by AGORA+ ranged between 48% in the Foursquare API and 100% for 8 API operations
(AmadeusCitySearch-GETCities, GitHub-createOrganizationRepository, GitLab-getApiV4ProjectsIdBadges, OMDb-
byIdOrTitle, OMDb-bySearch, Ohsome, Spotify-createPlaylist, and Stripe). 24 of the 29 false positives in Deutschebahn
are related to station opening and closing times; 12 of these FPs state that the opening (or closing) times of all the
workdays of the week are the same (e.g., monday.from_time == tuesday.from_time). This fact is true for for all the
stations returned by the API, but we consider it possible that it would not be true for every station, so we conservatively
marked it as a false positive. 12 more FPs are about the length of the station closing time: it is always 5 characters long,
as in “18:00”. Because it is conceivable that a station closes before 10:00am, we again marked these as false positives.

The heuristic applied by AGORA+ to reduce the number of false positives (detailed in Section 3.3) led to a precision
increase over AGORA of up to 114% (FDIC API), yielding a precision increase in 22 out of 25 operations. Most false
positives in the FDIC API arise from arithmetic comparisons involving response fields that serve as numerical flags
(values of 0 or 1) with other numerical variables. The heuristics of AGORA+ significantly reduced the number of false

Manuscript submitted to ACM

22 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

String
comparisons

2.4%

Array properties 0.6%

Array properties
2.6%

Specific values
3.9%

String comparisons
0.7%

FP
59.9%

TP
40.1%

Arithmetic comparisons
52.7%

Specific
values
18.7%Arithmetic

comparisons
18.3%

(a) Daikon

Array
properties

0.7%

Specific values
3.3%

String
comparisons

0.9%

Specific
formats

0.9%

FP
39.9%

TP
60.1%

Specific
values
8.6%

String
comparisons

12.9%
Specific
formats
23.1%

Arithmetic
comparisons

34.8%

Arithmetic
comparisons

14.8%

(b) AGORA

TP
79.6%

FP
20.4%

Array
properties

1%

Specific
values
11.9%

Arithmetic
comparisons

17%

String
comparisons

17.9%

Specific
formats
31.9%

Arithmetic
comparisons

13.3%

Specific values 4.5%
Specific formats

1.3%

String comparisons 1.3%

(c) AGORA+

Fig. 4. Reported invariants by category in Daikon, AGORA, and AGORA+.

positives for this operation, lowering them from 415 to 81. In the Yelp API, 10 out of the 11 false positives reported by
AGORA are arithmetic comparisons stating that the value of the numeric parameters open_at (an integer representing
an Unix time) and radius (search radius in meters) is always greater than all the numeric response fields, including
the size of all the arrays in the response. The heuristic applied by AGORA+ automatically suppressed all these false
positives.

Statistical analysis confirms significant performance differences among the approaches. The Friedman test (p-value
< 0.05) rejected the null hypothesis of equivalent precision among AGORA+, AGORA, and Daikon. Post-hoc analysis
with Holm correction further validated these findings.

The number of invariants reported per operation varied between 4 in the GitLab-getApiV4ProjectsIdBadges operation
and 286 in the Vimeo API. We observed a strong positive correlation between the number of response fields and the
number of reported invariants, with a Spearman correlation coefficient of 0.92.

Figure 4 breaks down the true positives and false positives of each approach (Daikon, AGORA and AGORA+). In
the default version of Daikon, the largest portion of false positives (88%) were found in the arithmetic comparisons
category, followed by specific values (7%), array properties (4%), and string comparisons (1%). The invariants reported
by AGORA and AGORA+ are the same, except those belonging to the arithmetic comparisons category. Thanks to the
heuristics applied in AGORA+ (c.f. Section 3.3), the percentage of false positives in this category decreased from 87%
(909 invariants) to 65% (252 invariants), suppressing a total of 657 false positives.
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 23

False positives in the arithmetic comparison category typically occur when comparing numerical fields with values
in different magnitude orders, such as the duration of a Spotify song in milliseconds and its number of artists. The
remaining false positives are either invariants that report an object as always null or that limit a response field to only a
specific value or set of values, but the API supports more (e.g., reporting that the visibility of a GitHub repository is
always “public”). These invariants indicate either a lack of diversity in the test suite or bugs in the API (c.f. Section 5).

The heuristic applied by AGORA+ to reduce false positives also suppressed 66 true positives. This happened in
cases in which the variables involved in the invariant had clearly defined minimum and maximum values that did
not overlap (i.e., they guarantee that the invariant always holds and thus it is not a false positive). For example, the
automatically suppressed invariant input.maxWidth > size(return.items[]), reported in the YouTube API is true
because, according to the documentation [27], the minimum value of input.maxWidth is 72, whereas the maximum
value of size(return.items[]) is 50.

Overall, arithmetic comparisons remain the most common type of false positives reported by AGORA+ (65% of false
positives), followed by specific values (22%), string comparisons (6%) and specific formats (6%), with no false positives
of the array properties category.

We now present an analysis of the performance of the sets of added, enabled, and disabled invariants, specified in
Table 2. AGORA+ reported 627 invariants belonging to the set of added invariants, spanning 13 invariant types and
achieving precision ranges between 91%, and 100% for 11 invariant types. Among enabled invariants, it detected 272
instances of a single type (“twoString.StdString.SubString”) with 99% precision. For disabled invariants, the original
configuration of Daikon reported 789 instances across 11 invariant types, with precision ranging from 0% (for 7 types)
to 3%, except for two high-performing types: “scalar.NonZero” (240 instances, 98% precision) and “sequence.EltNonZero”
(74 instances, 99% precision). These invariants specify whether numerical variables or array elements are nonzero
but are also used to indicate non-null objects. These invariants were intentionally disabled in AGORA+ to prevent
redundancy or bloating the results, as nullability can be effectively specified using the OpenAPI Specification (OAS)
nullable property.

Beet took between 1.4 seconds (50 requests) and 67 seconds (10K requests) to generate the instrumentation of the
target API operations. Daikon (customized and default version) took between 1.8 seconds (50 requests) and 30 seconds
(10K requests) to detect the reported invariants. Overall, AGORA+ took less than 2 minutes to generate the invariants
using the complete dataset of 10K requests.

Answer to RQ1: How effective is AGORA+ in generating test oracles?

AGORA+ is effective in generating test oracles, achieving a precision of 80% when learning from 10K API
requests. This is a precision improvement of 100% over the default configuration of Daikon.

RQ2: Impact of the size of the input dataset. Figure 5 shows the evolution of the precision of AGORA+ with respect to
the number of API requests, as detailed in Table 3. The total precision improved from 68% with 50 API requests (an
average of 1345 valid invariants, i.e., test oracles), to 80% with the complete dataset (1506 valid invariants). This means a
drop in precision of just 12 percentage points when using the smallest dataset (50 API requests). The greatest precision
increase takes place between 100 and 500 requests (5 percentage points). Conversely, the number of reported invariants
decreases, mostly due to the suppression of false positives. The suppression of invariants classified as true positives
when increasing the size of the input test suite reveals that a counterexample (i.e., failure) has been found (c.f. Section 5).

Manuscript submitted to ACM

24 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

For instance, in the NYTimesBooks API, the suppression of the confirmed invariant LENGTH(return.isbn10)==10
revealed the presence of ISBNs with invalid values in the test suite. Figure 6 shows the evolution of the number of
reported valid invariants (i.e., true positives) with respect to the number of API requests. When using the 50 requests
datasets, AGORA+ detected, on average, 91% of all the true positives reported by the 10K dataset, with a standard
deviation of 8 percentage points. The increase in the number of reported true positives ranged between 0 percentage
points in 8 API operations (GitHub-createOrganizationRepository, GitLab-getApiV4ProjectsIdBadges, NYTimesBooks-
GET_lists-format, Ohsome-elementsAggregation, OMDb-byIdOrTitle, Spotify-createPlaylist, Stripe-PostProducts and
Yelp-getBusinesses), and 38 percentage points in the “searchInstitutions” operation of the FDIC API. This shows the
applicability of AGORA+ even when provided with a small set of test cases as input.

50 100 500 1000 10000
0

20

40

60

80

100

AmadeusCity AmadeusHotel Deutschebahn DHL FDIC
Foursquare GitHub-createRepo GitHub-getRepos GitLab-getProjectsIdBadges GitLab-listProjectJobs
iTunes LanguageTool Marvel NYTimesBooks Ohsome
OMDB-byIdTitle OMDB-bySearch RESTCountries Spotify-playlist Spotify-albumTracks
Spotify-artistAlbums Stripe Vimeo Yelp YouTube
TOTAL

Number of API requests

Pr
ec

is
io

n

Fig. 5. How test suite size affects the precision of AGORA+.

Figure 7 shows a boxplot with the distribution of the precision achieved by AGORA+ on all the operations across
multiple divisions on random subgroups of 50 test cases. For all the API operations, the difference between the median
and the first and third quartiles was less than 5 percentage points, with the exceptions of the NYTimesBook API, with
a difference of 6 percentage points between the median and the third quartile, and the “getApiV4ProjectsIdBadges”
operation of the GitLab API, with a difference of 17 percentage points between the median the first quartile. This
significant difference in the GitLab API was due to the suppression, in 8 out of 10 seeds, of 2 valid invariants (out of an
average of 4 reported invariants) which revealed the presence of real bugs (Section 5). Overall, these results show that
the effectiveness of AGORA+ is stable across different datasets.

Answer to RQ2: How does the size of the input dataset affect the performance of AGORA+?

Increasing the size of the test suite causes an increase in the precision achieved and a decrease in the number
of invariants reported. The suppressed invariants are mostly false positives, with only a small increase in
the number of valid invariants (i.e., true positives). With a small but diverse set of 50 API requests, AGORA+
achieves a precision of 68% (12 percentage points less than when using a dataset 200 times bigger), and detects
91% of the valid invariants detected when using the 10K dataset.

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 25

50 100 500 1000 10000

0

50

100

150

200

AmadeusCity AmadeusHotel Deutschebahn DHL FDIC
Foursquare GitHub-createRepo GitHub-getRepos GitLab-getProjectsIdBadges GitLab-listProjectJobs
iTunes LanguageTool Marvel NYTimesBooks Ohsome
OMDB-byIdTitle OMDB-bySearch RESTCountries Spotify-playlist Spotify-albumTracks
Spotify-artistAlbums Stripe Vimeo Yelp YouTube

Number of API requests

N
u
m

b
er

 o
f

re
p
o
rt

ed
 v

al
id

 i
n
va

ri
an

ts

Fig. 6. How test suite size affects the number of valid invariants reported by AGORA+.

AmadeusCitySearch-GETCities

AmadeusHotel-getMultiHotelOffers

Deutschebahn-getStations

DHL-getLocation-finderV1Find-by-address

FDIC-searchInstitutions

Foursquare-placeSearch

GitHub-createOrganizationRepository

GitHub-getOrganizationRepositories

GitLab-getApiV4ProjectsIdBadges

GitLab-listProjectJobs

iTunes-search

LanguageTool-checkText

Marvel-getComicIndividual

NYTimesBooks-GET_lists-format

Ohsome-elementsAggregation

OMDB-byIdOrTitle

OMDB-bySearch

RESTCountries-v31ListOfCodes

Spotify-createPlaylist

Spotify-getAlbumTracks

Spotify-getArtistAlbums

Stripe-PostProducts

Vimeo-search_videos

Yelp-getBusinesses

YouTube-listVideos

TOTAL

30

40

50

60

70

80

90

100

API Operation

P
re

ci
si

o
n

Fig. 7. Distribution of the precision of AGORA+ in the 50 test cases subset across 10 executions.

4.3 Experiment 2: Failure Detection

This experiment aims to answer RQ3 by analyzing the effectiveness of the test oracles generated by AGORA+ in
detecting failures.

4.3.1 Experimental Setup. To address RQ3, we evaluated the effectiveness of the generated test oracles in detecting
failures (i.e., erroneous outputs) in the APIs under test. To this end, we systematically seeded errors in API responses
using JSONMutator [10], an open-source mutation tool that applies different mutation operators on JSON data, e.g.,
removing an array item. This approach differs from traditional mutation testing, where defects are seeded in the source

Manuscript submitted to ACM

26 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

Table 4. Failure Detection Ratio per API operation.

API - Operation Assertions (test oracles) FDR (%)

AmadeusCitySearch-GETCities 33 51
AmadeusHotel-getMultiHotelOffers 69 60
Deutschebahn-getStations 38 21
DHL-getLocation-finderV1Find-by-address 12 48
FDIC-searchInstitutions 119 47
Foursquare-placeSearch 40 23
GitHub-createOrganizationRepository 193 93
GitHub-getOrganizationRepositories 130 65
GitLab-getApiV4ProjectsIdBadges 3 30
GitLab-listProjectJobs 53 37
iTunes-search 32 38
LanguageTool-checkText 42 29
Marvel-getComicIndividual 54 37
NYTimesBooks-GET_lists-format 31 50
Ohsome-elementsAggregation 15 74
OMDB-byIdOrTitle 15 36
OMDB-bySearch 5 21
RESTCountries-v31ListOfCodes 26 15
Spotify-createPlaylist 41 93
Spotify-getAlbumTracks 43 70
Spotify-getArtistAlbums 43 75
Stripe-PostProducts 30 58
Vimeo-search_videos 199 47
Yelp-getBusinesses 12 24
YouTube-listVideos 91 67

TOTAL 1369 48

code of the program under test. The motivation behind our strategy is to assess the failure detection capabilities of the
generated test oracles on large-scale industrial APIs, for which source code is not available. Although open-source
APIs exist, they are generally less complex compared to the APIs used in our study [75, 80]. Also, we argue that
this strategy—introducing errors in API responses—is appropriate since our goal is assessing the effectiveness of the
test oracles, not the test inputs, which has already been thoroughly investigated in previous studies. This simulates
a regression testing scenario where previously inferred test oracles are reused to ensure that code changes do not
unintentionally impact existing functionalities. In case of changes in the API implementation or functional behavior, it
would be necessary to run AGORA+ again to generate updated test oracles that align with the revised API behavior.

For each API operation, we selected the test oracles derived from the set of 50 test cases since, as revealed in our
previous experiment, this was the most conservative input dataset. Test oracles were transformed into executable
assertions (1369 in total) using PostmanAssertify (Table 4). Then, for each API operation, we randomly selected 1K API
responses from the set of 10K test cases generated by RESTest meeting the following constraints: (1) they were not part
of the 50-requests set used for detecting the invariants, (2) they contained at least one result item (we cannot apply
mutation operators on empty arrays), and (3) they revealed no failures (c.f. Section 5).

We used JSONMutator to introduce a single error on each API response, simulating a failure. Then, we ran the
assertions and marked the failure as detected if at least one of the test assertions (i.e., test oracles) was violated. We
repeated this process 100 times per operation to minimize the effect of randomness computing the average percentage
of failures detected. In total, the results are based on 2.5M seeded errors: 25 operations x 1,000 API responses x 100
repetitions. For each mutated test suite, we used PostmanAssertify to generate a Postman collection in which the
mutated outputs were used as response mocks.
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 27

For our experiments, we configured JSONMutator to apply mutation operators that resulted in syntactically valid
mutants, i.e., conform to the API specification. Syntactically invalid mutants that would result in violations of the API
specification (e.g., adding a new property to a JSON object) can be detected by existing approaches and therefore are
out of the scope of AGORA+. Specifically, we enabled the mutation operators that consist of changing boolean, double,
long and string values (e.g., adding or removing characters) and altering array values (e.g., removing and disordering
elements), using a total of 12 mutation operators. All the mutations resulted in a distinguishable change in the API
response and therefore there were no equivalent mutants [78, 93].

For string response fields, the “boundary” operator replaces the original string with boundary values, such as an
empty string, an all-uppercase or all-lowercase string, or strings of minimum and maximum length (e.g., 1 or 10
characters). The “mutate” operator modifies strings by adding, removing, or replacing a single character, while the
“addSpecialCharacters” operator introduces special characters like “/” or “*” into the string. Lastly, the “replace” operator
completely substitutes the string with a random value.

For numerical response fields (doubles, longs, and integers), the “mutate” operator alters values by adding or
subtracting a small delta, which is 0.5 for decimal numbers and 1 for integers. The “replace” operator, on the other hand,
substitutes the number with a completely random value.

For arrays, the “disorderElements” operator changes the order of the elements within the array, while the “removeEle-
ment” operator randomly removes one or more elements. The “empty” operator clears the entire array, leaving it with
no elements.

For Boolean fields, the “mutate” operator simply flips the Boolean value, changing true to false or vice versa.
We disabled the mutation operators that produced mutants non-conformant with the OAS specification. Also, we

disabled operators that converted response fields into null values, since null values are easily detected as a violations of
the nullable property of OAS.

4.3.2 Experimental Results. Table 4 shows the number of test assertions (i.e., test oracles) and the percentage of detected
failures for each API operation. Overall, test oracles generated by AGORA+ identified 48% of the failures. This percentage
ranged between 15% in the RESTCountries API and 93% in the operations “createOrganizationRepository” of the GitHub
API and “createPlaylist” of the Spotify API.

Figure 8 illustrates the percentage of mutants generated by each mutation operator killed by AGORA+. AGORA+
showed its lowest performance with the “disorderElements” mutation operator (6% detection rate), as only 3 out of 25
API operations had test oracles related to array ordering. Conversely, string response fields are the most common in the
API responses, accounting for 72% of mutations (1.8M out of 2.5M). AGORA+ performed best on string-type response
fields, detecting 54% of mutations. Overall, AGORA+ proves effective in detecting failures related to incorrect formats
(e.g., URLs or dates), predefined values, or relational patterns (e.g., equality or substring). However, it struggles to identify
incorrect values that depend solely on the semantics of the application or underlying data. For instance, the primary
source of undetected errors was modifying unique string values (e.g., for movie titles, “title=Alien”→ “title=Aliens”)
introduced by the string-replace mutation operator. Detecting such semantic bugs is extremely challenging and falls
outside the scope of this work.

In view of these results, we can answer RQ3 as follows:

Manuscript submitted to ACM

28 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

string-mutate

string-replace

string-boundary

string-addSpecialCharacters

array-disorderElements

array-removeElement

array-empty

long-mutate

long-replace

double-mutate

double-replace

boolean-mutate

0

20

40

60

80

100

Mutation operator

Pe
rc
en
ta
g
e
ki
lle
d

Fig. 8. AGORA+ performance detecting each mutation operator.

Answer to RQ3: How effective are the generated test oracles in revealing failures?

The test oracles generated by AGORA+ are effective in detecting failures, catching 5 out of every 10 errors
systematically seeded in API responses.

5 DETECTED FAILURES

The invariants detected by AGORA+ revealed real-world bugs in some of the APIs, showing the potential of the approach
as a testing technique on its own. Some of the invariants revealed inconsistent behavior, e.g., hotel rooms with zero

beds in the Amadeus Hotel API. We also found cases where a confirmed invariant (i.e., test oracle) was discarded when
increasing the size of the input dataset, meaning that a counterexample (i.e., failure) had been detected. Therefore, the
invariants reported by AGORA+ play a dual role in failure detection: invalid invariants reveal failures observed during
the invariant detection process, whereas violated valid invariants indicate failures observed in production. Invalid
variants require manual inspection, whereas the violation of confirmed invariants can be automatically detected during
testing. Overall, AGORA+ detected 32 domain-specific bugs (17 confirmed) in 13 operations from 11 APIs with millions
of users worldwide, namely Amadeus Hotel, Deutschebahn, FDIC, Foursquare, GitHub, GitLab, Marvel, NYTimesBooks,
OMDb, RESTCountries, and YouTube. Our supplementary material contains videos showing the replication process
of these bugs, as well as anonymized screenshots of our reports and the received responses [15]. Next, we detail the
detected bugs.

Amadeus Hotel. During our initial experiments, one of the detected invariants in the Amadeus Hotel API led to the
identification of 55 hotel offers in which the offered room had zero beds (return.room.typeEstimated.beds>=0).
This bug has been confirmed and fixed by Amadeus developers. Also, according to the description provided in the OAS
specification, the property code of the taxes response field of this operation should be a two-letter country code, but
the API always returns values such as “TOTAL_TAX” or “SERVICE_CHANGE”. This bug has not been confirmed yet.
Manuscript submitted to ACM

Test Oracle Generation for REST APIs 29

GitHub. In the “createOrganizationRepository” operation, the violation of the confirmed invariant
input.license_template==return.license.key revealed 15 test cases in which the repository was cre-
ated with an incorrect license. More specifically, in some cases, when creating a repository with the “ncsa” or
“postgresql” license, GitHub created a repository with the “other” license. This bug has been confirmed by the API
providers. Also, contrary to what is stated in the API specification and the documentation, AGORA+ detected that
the field template_directory was never included in the responses of the “getOrganizationRepositories” operation
(return.template_repository==null). Developers confirmed the issue and updated the documentation of GitHub
accordingly.

GitLab. The suppression of two confirmed invariants (return.image_url is Url and
return.rendered_image_url is Url) of the “getApiV4ProjectsIdBadges” operation uncovered badges with
URLs containing whitespaces, rendering them invalid. These bugs were confirmed by the API providers, who created
an issue to address them [9].

Foursquare.AGORA+ identified 9 bugs in this API, all of which have been confirmed by the API providers. The suppres-
sion of the confirmed invariants return.menu is URL and return.website is URL exposed locations with invalid
URLs for menus and websites, such as “http://gh”. These bugs have already been fixed. The suppression of the valid
invariant input.radius > return.distance revealed cases where the API returned places outside the user-defined
search radius. This was traced back to incorrect user-entered coordinates and has been corrected. Similarly, the sup-
pression of input.radius >= return.context.geo_bounds.circle.radius exposed a similar issue, this bug has
been fixed too. The suppression of input.min_price <= return.price and input.max_price >= return.price

uncovered test cases where the API returned places outside the specified price range, these bugs have not been fixed
yet. Additionally, the suppression of return.stats.total_photos >= 0 revealed a flaw where negative values were
assigned to the total_photos field when photos were demoted by the system or the Placemarker community. The API
providers confirmed this as a bug and are working on a fix. Similarly, the suppression of return.stats.total_photos
>= size(return.photos[]) and return.stats.total_tips >= size(return.tips[]) exposed test cases where
the reported totals for photos and tips were less than the actual number of items in the corresponding arrays. These
two bugs have been resolved.

FDIC. The API documentation specifies that the values of the CONSERVE and LAW_SASSER_FLG response
fields should be a numerical flag (0 or 1), but the invariants return.data.CONSERVE one of {“N”,”Y”} and
return.data.LAW_SASSER_FLG one of {“N”,”Y”} revealed that the documentation was inconsistent. The same
happens with the TRUST response field, AGORA+ reported the invariant return.data.TRUST one of {“0”, “1”},
whereas the documentation describes “00”, “10” and “11” as the expected values. None of these reports have been
confirmed yet.

RESTCountries. AGORA+ detected that the area in square kilometers of the Norwegian territories Svalbard
and Jan Mayen was indicated as -1.0 (invariant return.area>=-1.0). This bug has been confirmed and fixed
by the API providers [18, 19]. Also, the response fields documentation [20], indicates that the value of the
startOfWeek response field can be either Sunday or Monday. However, the invariant return.startOfWeek one

of {"monday","saturday","sunday"} identified “Saturday” as the value for Iran. This report has not been con-
firmed yet.

YouTube. When performing a search using the regionCode input parameter, the returned videos must
be available in the provided region. However, a violation of the confirmed invariant input.regionCode in

Manuscript submitted to ACM

30 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

return.contentDetails.regionRestriction.allowed[], led us to detect 81 cases in which the API returned
videos that were not available in the provided region. This error has been confirmed by YouTube developers.

Deutschebahn. The violation of the confirmed invariant return.localServiceStaff.availability.sunday.
toTime is Time: 24-hour format led to the detection of a train station (Coburg) with a value following an incorrect
format for the end time of the availability of the service staff on Sundays (recorded as 18.30, instead of 18:30). This bug
has been confirmed and fixed by the API providers.

Marvel. In the “getComicById” operation, AGORA+ detected +3.1K comics with 0 pages
(return.pageCount>=0), invalid date formats, comics with an invalid Diamond code (violations of the in-
variant LENGTH(return.diamondCode)==9), and invalid values for the EAN code (violations of the invariant
LENGTH(return.ean)==20). For example, we found a case where the EAN code had the value of the Diamond code.
The OAS specification states that the value of the data.results.stories.items.type response field should be
either “interior” or “cover”, but the invariant return.type one of {“cover”,“interiorStory”} revealed that this
description is imprecise. Further analysis of the remaining API requests uncovered 32 different values for this response
field. These reports have not been confirmed yet.

NYTimesBooks. The isbn10 response field of this API is expected to store a string of 10 characters. However, the
violation of the LENGTH(return.isbn10)==10 invariant revealed two different failures: a book with an isbn10 of 9
characters, and a book with the string “isbn10” as value for the isbn10 response field. These reports have not been
confirmed yet.

OMDb. The type parameter of the OMDb API operations allows users to filter results by media type—namely
“movie", “series” or “episode”— as specified in the documentation. However, one of the invariants (return.Type one

of {"game","movie","series"}) revealed a new value for this parameter that was not specified in the documentation:
“game”. Moreover, we detected that the operations “byIdOrTitle” and “bySearch” do not support filtering by “episode”,
despite being specified as a valid filtering value in the documentation. API developers have not confirmed these issues
yet.

6 THREATS TO VALIDITY

In this section, we discuss the potential validity threats that may have influenced our work, and how these were
mitigated.

Internal validity. Are there factors that might affect the results of our evaluation? For our experiments, we used the
OAS specification of the APIs under test. When possible, we used the publicly available API specifications. However,
the specifications of the Foursquare, iTunes, Ohsome, OMDb, RESTCountries, and Yelp APIs were unavailable, so
we generated them manually based on an analysis of the web documentation. Therefore, it is possible that these
specifications have errors and deviate from the API documentation. To mitigate this, we used the state-of-the-art
Atlassian OAS syntactic validator [23] to ensure the OAS was consistent with the returned API responses. The updated
OAS specifications were thoroughly reviewed by at least two authors.

The effectiveness of our approach largely depends on the diversity of the input API requests and responses. To
maximize input diversity, we manually selected a set of varied test inputs for each parameter based on an analysis of
the documentation. This may be considered a naive and conservative approach. Using more systematic or automated
means (e.g., adaptive random testing [64]) could probably yield even better results.

Manuscript submitted to ACM

Test Oracle Generation for REST APIs 31

The classification of the reported invariants as true positives or false positives may be affected by human biases or
errors. To mitigate this threat, each invariant was checked by at least two authors, analyzing the API documentation. If
the documentation was not clear enough, we consulted the API providers about the expected API behavior.

Finally, the division of the dataset into random subgroups may have also affected the results. To mitigate this threat,
we performed this division into subsets 10 times, computing the average performance between runs.

External validity. To what extent can we generalize the findings of our investigation? We evaluated AGORA+ on a set of
25 operations from 20 different APIs, and therefore our conclusions might not generalize beyond that. To mitigate this
threat, we evaluated the approach with a set of popular industrial APIs of different domains and various sizes used in
related papers.

The completeness of the OAS specification has a direct impact in the quality of the reported invariants. An incomplete
OAS (e.g., with missing response fields) leads to an incomplete set of invariants. However, most existing tools for
automated API testing provide features that ensure the syntactic validity of the OAS with respect to the returned API
responses.

AGORA+ relies on test suite diversity to ensure accurate invariant detection. A lack of diversity in the test suite can
lead to invalid or incomplete invariants that reflect only the API behavior within the test suite, without generalizing to
the expected functionality. However, test suite diversity is a fundamental requirement in testing and can typically be
achieved by applying standard test case design techniques.

The novel types of invariant proposed might not generalize beyond the selected APIs. To mitigate this threat, these
invariants were created based on an analysis of a systematically collected dataset of 40 realistic APIs (702 operations)
belonging to different domains [30]. We remark, however, that this set of invariants is not intended to be complete and
new invariant types could be proposed in the future.

7 CONCLUSIONS

This paper introduces AGORA+, an approach for generating test oracles for REST APIs through the detection of likely
invariants. Invariants are detected by analyzing the API specification and a set of API requests with their corresponding
responses. The approach is implemented using Daikon, an open-source tool for dynamic invariant detection. In particular,
we created Beet, a novel Daikon front-end for REST APIs described using OAS, and a customized version of Daikon
supporting the detection of 106 distinct types of invariants in REST APIs. AGORA+ also integrates PostmanAssertify, a
tool that converts the reported invariants into executable Postman assertions, making our approach readily applicable.
Evaluation results on a set of 25 operations from 20 industrial APIs show that AGORA+ can generate hundreds of
effective test oracles with just 50 requests in seconds, outperforming the default version of Daikon and AGORA—a
previous version of our approach—by a margin of 100% and 33%, respectively. In addition, AGORA+ helped identify 32
issues in industrial APIs with millions of users, contributing to fixes and documentation updates, demonstrating its
potential as a standalone testing technique. Other potential lines of work include developing invariant prioritization
strategies [94], and enabling users to focus test oracle generation on specific variables [110]. Since it operates in a
black-box mode, AGORA+ can be easily integrated into existing API testing tools supporting the OAS specification
format.

Manuscript submitted to ACM

32 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

DATA AVAILABILITY STATEMENT

Supplementary material includes the source code of the scripts and projects developed, the data generated in our
experiments, and instructions on how to reproduce our evaluation. The artifact can be downloaded at [15] https:
//doi.org/10.5281/zenodo.12506791.

ACKNOWLEDGMENTS

This work has been partially supported by grants PID2021-126227NB-C22 and PID2021-126227NB-C21,
funded by MCIN/AEI /10.13039/501100011033/FEDER, UE; and grant TED2021-131023B-C21, funded by
MCIN/AEI/10.13039/501100011033 and by European Union “NextGenerationEU”/PRTR.

REFERENCES
[1] 2025. Beet repository. https://github.com/isa-group/Beet Accessed January 2025.
[2] 2025. Chai Assertion Library. https://www.chaijs.com/api/bdd/ Accessed January 2025.
[3] 2025. Daikon AGORA Docker image. https://hub.docker.com/r/javalenzuela/daikon_agora Accessed January 2025.
[4] 2025. Daikon AGORA repository. https://github.com/JuanCarlosAlonsoValenzuela/daikon_modified Accessed January 2025.
[5] 2025. Daikon developer manual. New formatting for invariants. https://plse.cs.washington.edu/daikon/download/doc/developer.html#New-

formatting-for-invariants Accessed January 2025.
[6] 2025. Daikon front ends and instrumentation. https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-and-instrumentation

Accessed January 2025.
[7] 2025. extJWNL (Extended Java WordNet Library) repository. https://github.com/extjwnl/extjwnl Accessed January 2025.
[8] 2025. GitHub API. https://developer.github.com/v3/ Accessed January 2025.
[9] 2025. GitLab issue. Invalid URLs in the getApiV4ProjectsIdBadges operation. https://gitlab.com/gitlab-org/gitlab/-/issues/473603 Accessed

January 2025.
[10] 2025. JSONMutator. https://github.com/isa-group/JSONmutator Accessed January 2025.
[11] 2025. OpenAPI Specification. https://www.openapis.org Accessed January 2025.
[12] 2025. Postman API Platform. https://www.postman.com Accessed January 2025.
[13] 2025. PostmanAssertify repository. https://github.com/JuanCarlosAlonsoValenzuela/PostmanAssertify Accessed January 2025.
[14] 2025. RapidAPI API directory. https://rapidapi.com/products/api-hub/ Accessed January 2025.
[15] 2025. Replication package. https://doi.org/10.5281/zenodo.12506791 Accessed January 2025.
[16] 2025. Repository APIs.guru. https://apis.guru Accessed January 2025.
[17] 2025. RESTCountries API issue. Empty idd value. https://gitlab.com/restcountries/restcountries/-/issues/220#note_1726639875 Accessed January

2025.
[18] 2025. RESTCountries commit fixing country with negative area bug. https://gitlab.com/restcountries/restcountries/-/commit/

ee498c74ad21c93b66a577d63d2c8eacefc58d42 Accessed January 2025.
[19] 2025. RESTCountries GitLab issue. Country with negative area. https://gitlab.com/restcountries/restcountries/-/issues/219 Accessed January 2025.
[20] 2025. RESTCountries response fields. https://gitlab.com/restcountries/restcountries/-/blob/master/FIELDS.md Accessed January 2025.
[21] 2025. Spotify Web API. https://developer.spotify.com/web-api/ Accessed January 2025.
[22] 2025. SRC Grand Finalists 2023. https://src.acm.org/grand-finalists/2023 Accessed January 2025.
[23] 2025. Swagger Request Validator. https://mvnrepository.com/artifact/com.atlassian.oai/swagger-request-validat Accessed January 2025.
[24] 2025. Vimeo API. Working with Authentication. https://developer.vimeo.com/api/authentication Accessed January 2025.
[25] 2025. Visa Developer Center. https://developer.visa.com Accessed January 2025.
[26] 2025. Write API test scripts in Postman. https://learning.postman.com/docs/writing-scripts/test-scripts/ Accessed January 2025.
[27] 2025. YouTube API. List videos operation. https://developers.google.com/youtube/v3/docs/videos/list Accessed January 2025.
[28] Afsoon Afzal, Claire Le Goues, and Christopher Steven Timperley. 2021. Mithra: Anomaly Detection as an Oracle for Cyberphysical Systems. IEEE

Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3120680
[29] Juan C. Alonso. 2022. Automated Generation of Test Oracles for RESTful APIs. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing
Machinery, New York, NY, USA, 1808–1810. https://doi.org/10.1145/3540250.3559080

[30] Juan C. Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic
Test Inputs for Web APIs. IEEE Transactions on Software Engineering (2022). https://doi.org/10.1109/TSE.2022.3150618

Manuscript submitted to ACM

https://doi.org/10.5281/zenodo.12506791
https://doi.org/10.5281/zenodo.12506791
https://github.com/isa-group/Beet
https://www.chaijs.com/api/bdd/
https://hub.docker.com/r/javalenzuela/daikon_agora
https://github.com/JuanCarlosAlonsoValenzuela/daikon_modified
https://plse.cs.washington.edu/daikon/download/doc/developer.html#New-formatting-for-invariants
https://plse.cs.washington.edu/daikon/download/doc/developer.html#New-formatting-for-invariants
https://plse.cs.washington.edu/daikon/download/doc/daikon.html#Front-ends-and-instrumentation
https://github.com/extjwnl/extjwnl
https://developer.github.com/v3/
https://gitlab.com/gitlab-org/gitlab/-/issues/473603
https://github.com/isa-group/JSONmutator
https://www.openapis.org
https://www.postman.com
https://github.com/JuanCarlosAlonsoValenzuela/PostmanAssertify
https://rapidapi.com/products/api-hub/
https://doi.org/10.5281/zenodo.12506791
https://apis.guru
https://gitlab.com/restcountries/restcountries/-/issues/220#note_1726639875
https://gitlab.com/restcountries/restcountries/-/commit/ee498c74ad21c93b66a577d63d2c8eacefc58d42
https://gitlab.com/restcountries/restcountries/-/commit/ee498c74ad21c93b66a577d63d2c8eacefc58d42
https://gitlab.com/restcountries/restcountries/-/issues/219
https://gitlab.com/restcountries/restcountries/-/blob/master/FIELDS.md
https://developer.spotify.com/web-api/
https://src.acm.org/grand-finalists/2023
https://mvnrepository.com/artifact/com.atlassian.oai/swagger-request-validat
https://developer.vimeo.com/api/authentication
https://developer.visa.com
https://learning.postman.com/docs/writing-scripts/test-scripts/
https://developers.google.com/youtube/v3/docs/videos/list
https://doi.org/10.1109/TSE.2021.3120680
https://doi.org/10.1145/3540250.3559080
https://doi.org/10.1109/TSE.2022.3150618

Test Oracle Generation for REST APIs 33

[31] Juan C. Alonso, Sergio Segura, and Antonio Ruiz-Cortés. 2023. AGORA: Automated Generation of Test Oracles for REST APIs. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing
Machinery, New York, NY, USA, 1018–1030. https://doi.org/10.1145/3597926.3598114

[32] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster. ACM Transactions on Software Engineering and Methodology
28, 1 (2019), 1–37. https://doi.org/10.1145/3293455

[33] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API Fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 748–758. https://doi.org/10.1109/ICSE.2019.00083

[34] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking Security Properties of Cloud Services REST APIs. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST). 387–397. https://doi.org/10.1109/ICST46399.2020.00046

[35] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, and Maite Arratibel. 2021. Generating Metamorphic Relations for
Cyber-Physical Systems with Genetic Programming: An Industrial Case Study. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing
Machinery, New York, NY, USA, 1264–1274. https://doi.org/10.1145/3468264.3473920

[36] Efe Barlas, Xin Du, and James C. Davis. 2022. Exploiting Input Sanitization for Regex Denial of Service. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 883–895.
https://doi.org/10.1145/3510003.3510047

[37] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem in Software Testing: A Survey. IEEE
Transactions on Software Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[38] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018.
Translating code comments to procedure specifications. In ISSTA 2018, Proceedings of the 2018 International Symposium on Software Testing and
Analysis. Amsterdam, Netherlands, 242–253.

[39] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Antonio Carzaniga. 2021. MeMo: Automatically identifying metamorphic
relations in Javadoc comments for test automation. Journal of Systems and Software 181 (Nov. 2021), 111041:1–13.

[40] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning programs. Journal of Systems and Software 164 (2020), 110542.
https://doi.org/10.1016/j.jss.2020.110542

[41] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2020. Human-In-The-Loop Automatic Program Repair. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). 274–285. https://doi.org/10.1109/ICST46399.2020.00036

[42] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting Static Analysis Accuracy with Instrumented Test Executions. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 1154–1165. https://doi.org/10.1145/3468264.3468626

[43] Jake Cobb, James A. Jones, Gregory M. Kapfhammer, and Mary Jean Harrold. 2011. Dynamic Invariant Detection for Relational Databases. In
Proceedings of the Ninth International Workshop on Dynamic Analysis (Toronto, Ontario, Canada) (WODA ’11). Association for Computing Machinery,
New York, NY, USA, 12–17. https://doi.org/10.1145/2002951.2002955

[44] Davide Corradini, Michele Pasqua, and Mariano Ceccato. 2023. Automated Black-box Testing of Mass Assignment Vulnerabilities in RESTful APIs.
https://doi.org/10.48550/ARXIV.2301.01261

[45] Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks. Journal of Logic and Computation 2 (08 1992). https://doi.org/10.
1093/logcom/2.4.511

[46] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022. TOGA: A Neural Method for Test Oracle Generation. In Proceedings
of the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 2130–2141. https://doi.org/10.1145/3510003.3510141

[47] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang, Yu Gao, Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, Hua Zhong, and
Tao Huang. 2023. Detecting Isolation Bugs via Transaction Oracle Construction. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 1123–1135. https://doi.org/10.1109/ICSE48619.2023.00101

[48] Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In WODA 2003: Workshop on Dynamic Analysis. Portland, OR, USA,
24–27.

[49] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering 27, 2 (Feb. 2001), 99–123.

[50] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon
system for dynamic detection of likely invariants. Science of Computer Programming 69, 1 (2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015
Special issue on Experimental Software and Toolkits.

[51] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. Ph. D. Dissertation. University of California,
Irvine.

[52] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE Transactions on Software Engineering 39, 2 (2013), 276–291.
https://doi.org/10.1109/TSE.2012.14

[53] Gregory Gay, Sanjai Rayadurgam, and Mats P.E. Heimdahl. 2014. Improving the Accuracy of Oracle Verdicts through Automated Model Steering.
In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (Vasteras, Sweden) (ASE ’14). Association for

Manuscript submitted to ACM

https://doi.org/10.1145/3597926.3598114
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1109/ICST46399.2020.00036
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/2002951.2002955
https://doi.org/10.48550/ARXIV.2301.01261
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1109/ICSE48619.2023.00101
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/TSE.2012.14

34 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

Computing Machinery, New York, NY, USA, 527–538. https://doi.org/10.1145/2642937.2642989
[54] Luca Gazzola, Maayan Goldstein, Leonardo Mariani, Itai Segall, and Luca Ussi. 2020. Automatic Ex-Vivo Regression Testing of Microservices.

In Proceedings of the IEEE/ACM 1st International Conference on Automation of Software Test (Seoul, Republic of Korea) (AST ’20). Association for
Computing Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/3387903.3389309

[55] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum. 2013. Practical automated vulnerability monitoring using program state invariants. In 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE Computer Society, Los Alamitos, CA, USA, 1–12.
https://doi.org/10.1109/DSN.2013.6575318

[56] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent REST API Data Fuzzing. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 725–736. https://doi.org/10.1145/3368089.
3409719

[57] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential Regression Testing for REST APIs. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing Machinery, New
York, NY, USA, 312–323. https://doi.org/10.1145/3395363.3397374

[58] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Automatic generation of oracles for exceptional behaviors. In ISSTA
2016, Proceedings of the 2016 International Symposium on Software Testing and Analysis. Saarbrücken, Genmany, 213–224.

[59] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2023. Testing RESTful APIs: A Survey. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 27
(Nov. 2023), 41 pages. https://doi.org/10.1145/3617175

[60] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and Asserting Distributed System Invariants. In Proceedings of the 40th
International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
1149–1159. https://doi.org/10.1145/3180155.3180199

[61] J. Haltermann and H. Wehrheim. 2022. Machine Learning Based Invariant Generation: A Framework and Reproducibility Study. In 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST). IEEE Computer Society, Los Alamitos, CA, USA, 12–23. https://doi.org/10.1109/
ICST53961.2022.00012

[62] Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving Semantics-Aware Fuzzers from Web API Schemas. In 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 345–346. https://doi.org/10.1145/3510454.3528637

[63] Soneya Binta Hossain and Matthew Dwyer. 2024. TOGLL: Correct and Strong Test Oracle Generation with LLMs. arXiv:2405.03786 [cs.SE]
https://arxiv.org/abs/2405.03786

[64] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin Xia. 2021. A Survey on Adaptive Random Testing. IEEE Transactions on
Software Engineering 47, 10 (2021), 2052–2083. https://doi.org/10.1109/TSE.2019.2942921

[65] Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand. 2022. Perfect is the Enemy of Test Oracle. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 70–81. https://doi.org/10.1145/3540250.3549086

[66] Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis. The MIT Press.
[67] Daniel Jacobson, Greg Brail, and Dan Woods. 2011. APIs: A Strategy Guide. O’Reilly Media, Inc.
[68] Charaka Geethal Kapugama, Van-Thuan Pham, Aldeida Aleti, and Marcel Böhme. 2022. Human-in-the-Loop Oracle Learning for Semantic Bugs in

String Processing Programs. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South
Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 215–226. https://doi.org/10.1145/3533767.3534406

[69] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST: Property-based Test Generation of OpenAPI Described RESTful APIs.
In International Conference on Software Testing, Validation and Verification. 131–141.

[70] Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato. 2023. Enhancing
REST API Testing with NLP Techniques. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (Seattle,
WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 1232–1243. https://doi.org/10.1145/3597926.3598131

[71] M. Kim, S. Sinha, and A. Orso. 2023. Adaptive REST API Testing with Reinforcement Learning. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Computer Society, Los Alamitos, CA, USA, 446–458. https://doi.org/10.1109/ASE56229.2023.00218

[72] Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. 2025. LlamaRestTest: Effective REST API Testing with Small Language Models.
arXiv:2501.08598 [cs.SE] https://arxiv.org/abs/2501.08598

[73] Myeongsoo Kim, Tyler Stennett, Dhruv Shah, Saurabh Sinha, and Alessandro Orso. 2024. Leveraging Large Language Models to Improve REST API
Testing. arXiv:2312.00894 [cs.SE]

[74] Myeongsoo Kim, Tyler Stennett, Saurabh Sinha, and Alessandro Orso. 2024. A Multi-Agent Approach for REST API Testing with Semantic Graphs
and LLM-Driven Inputs. arXiv:2411.07098 [cs.SE] https://arxiv.org/abs/2411.07098

[75] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated Test Generation for REST APIs: No Time to Rest Yet. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing
Machinery, New York, NY, USA, 289–301. https://doi.org/10.1145/3533767.3534401

[76] Sumit Lahiri and Subhajit Roy. 2022. Almost Correct Invariants: Synthesizing Inductive Invariants by Fuzzing Proofs. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery,
New York, NY, USA, 352–364. https://doi.org/10.1145/3533767.3534381

Manuscript submitted to ACM

https://doi.org/10.1145/2642937.2642989
https://doi.org/10.1145/3387903.3389309
https://doi.org/10.1109/DSN.2013.6575318
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3395363.3397374
https://doi.org/10.1145/3617175
https://doi.org/10.1145/3180155.3180199
https://doi.org/10.1109/ICST53961.2022.00012
https://doi.org/10.1109/ICST53961.2022.00012
https://doi.org/10.1145/3510454.3528637
https://arxiv.org/abs/2405.03786
https://arxiv.org/abs/2405.03786
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/3533767.3534406
https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1109/ASE56229.2023.00218
https://arxiv.org/abs/2501.08598
https://arxiv.org/abs/2501.08598
https://arxiv.org/abs/2312.00894
https://arxiv.org/abs/2411.07098
https://arxiv.org/abs/2411.07098
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534381

Test Oracle Generation for REST APIs 35

[77] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-Based RESTful
API Testing with Execution Feedback. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1406–1417. https://doi.org/10.1145/3510003.3510133

[78] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014. Overcoming the Equivalent Mutant Problem: A Systematic
Literature Review and a Comparative Experiment of Second Order Mutation. IEEE Transactions on Software Engineering 40, 1 (2014), 23–42.
https://doi.org/10.1109/TSE.2013.44

[79] R. Mahmood, J. Pennington, D. Tsang, T. Tran, and A. Bogle. 2022. A Framework for Automated API Fuzzing at Enterprise Scale. In 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST). IEEE Computer Society, Los Alamitos, CA, USA, 377–388. https://doi.org/10.
1109/ICST53961.2022.00018

[80] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés. 2021. Black-Box and White-Box Test Case Generation for RESTful
APIs: Enemies or Allies?. In International Symposium on Software Reliability Engineering.

[81] Alberto Martin-Lopez, Sergio Segura, Carlos Müller, and Antonio Ruiz-Cortés. 2021. Specification and Automated Analysis of Inter-Parameter
Dependencies in Web APIs. IEEE Transactions on Services Computing (2021). https://doi.org/10.1109/TSC.2021.3050610

[82] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs. In
International Conference on Service-Oriented Computing. 459–475.

[83] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest: Automated Black-Box Testing of RESTful Web APIs. In International
Symposium on Software Testing and Analysis.

[84] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2022. Online Testing of RESTful APIs: Promises and Challenges. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 408–420. https://doi.org/10.1145/3540250.3549144

[85] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021.
Studying the Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks. In Proceedings of the 43rd International Conference on
Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 336–347. https://doi.org/10.1109/ICSE43902.2021.00041

[86] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. 2022. Fuzzing Class Specifications. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 1008–1020. https:
//doi.org/10.1145/3510003.3510120

[87] Facundo Molina, Renzo Degiovanni, Pablo Ponzio, Germán Regis, Nazareno Aguirre, and Marcelo Frias. 2019. Training Binary Classifiers as Data
Structure Invariants. In Proceedings of the 41st International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press,
759–770. https://doi.org/10.1109/ICSE.2019.00084

[88] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. 2021. EvoSpex: An Evolutionary Algorithm for Learning Postconditions. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 1223–1235. https://doi.org/10.1109/
ICSE43902.2021.00112

[89] Jeremy W. Nimmer and Michael D. Ernst. 2001. Static verification of dynamically detected program invariants: Integrating Daikon and ESC/Java.
In RV 2001: Proceedings of the First Workshop on Runtime Verification. Paris, France.

[90] Jeremy W. Nimmer and Michael D. Ernst. 2002. Automatic generation of program specifications. In ISSTA 2002, Proceedings of the 2002 International
Symposium on Software Testing and Analysis. Rome, Italy, 232–242.

[91] Manuel Palomo-Duarte, Antonio García-Domínguez, Inmaculada Medina-Bulo, Alejandro Alvarez-Ayllón, and Javier Santacruz. 2010. Takuan: A
Tool for WS-BPEL Composition Testing Using Dynamic Invariant Generation. In Web Engineering, Boualem Benatallah, Fabio Casati, Gerti Kappel,
and Gustavo Rossi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 531–534.

[92] Lianglu Pan, Shaanan Cohney, Toby Murray, and Van-Thuan Pham. 2024. EDEFuzz: A Web API Fuzzer for Excessive Data Exposures. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New
York, NY, USA, Article 45, 12 pages. https://doi.org/10.1145/3597503.3608133

[93] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis
and Survey. Advances in Computers, Vol. 112. Elsevier, 275–378. https://doi.org/10.1016/bs.adcom.2018.03.015

[94] Fabrizio Pastore and Leonardo Mariani. 2015. ZoomIn: Discovering Failures by Detecting Wrong Assertions. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. 66–76. https://doi.org/10.1109/ICSE.2015.29

[95] Antonio Pecchia, Stefano Russo, and Santonu Sarkar. 2020. Assessing Invariant Mining Techniques for Cloud-Based Utility Computing Systems.
IEEE Transactions on Services Computing 13, 1 (2020), 44–58. https://doi.org/10.1109/TSC.2017.2679715

[96] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs. O’Reilly Media, Inc.
[97] Sergio Segura, Juan C. Alonso, Alberto Martin-Lopez, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés. 2022. Automated Generation of

Metamorphic Relations for Query-Based Systems. In 2022 IEEE/ACM 7th International Workshop on Metamorphic Testing (MET). 48–55. https:
//doi.org/10.1145/3524846.3527338

[98] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A Survey on Metamorphic Testing. IEEE Transactions on Software
Engineering 42, 9 (2016), 805–824. https://doi.org/10.1109/TSE.2016.2532875

[99] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Metamorphic Testing of RESTful Web APIs. IEEE Transactions on
Software Engineering 44, 11 (2018), 1083–1099. https://doi.org/10.1109/TSE.2017.2764464

Manuscript submitted to ACM

https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/ICST53961.2022.00018
https://doi.org/10.1109/ICST53961.2022.00018
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.1145/3540250.3549144
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1145/3510003.3510120
https://doi.org/10.1109/ICSE.2019.00084
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1145/3597503.3608133
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ICSE.2015.29
https://doi.org/10.1109/TSC.2017.2679715
https://doi.org/10.1145/3524846.3527338
https://doi.org/10.1145/3524846.3527338
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/TSE.2017.2764464

36 Juan C. Alonso, Michael D. Ernst, Sergio Segura, and Antonio Ruiz-Cortés

[100] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2022. Improving Test Case Generation for REST APIs through Hierarchical
Clustering. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (Melbourne, Australia) (ASE ’21). IEEE
Press, 117–128. https://doi.org/10.1109/ASE51524.2021.9678586

[101] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020. Evolutionary Improvement of Assertion Oracles. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Virtual Event,
USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 1178–1189. https://doi.org/10.1145/3368089.3409758

[102] Theofanis Vassiliou-Gioles. 2020. A simple, lightweight framework for testing RESTful services with TTCN-3. In 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security Companion (QRS-C). 498–505. https://doi.org/10.1109/QRS-C51114.2020.00089

[103] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RestTestGen: Automated Black-Box Testing of RESTful APIs. In International
Conference on Software Testing, Verification and Validation.

[104] Henry Vu, Tobias Fertig, and Peter Braun. 2018. Verification of Hypermedia Characteristic of RESTful Finite-State Machines. In Companion
Proceedings of the The Web Conference 2018 (Lyon, France) (WWW ’18). International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE, 1881–1886. https://doi.org/10.1145/3184558.3191656

[105] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. 2020. On Learning Meaningful Assert Statements for Unit
Test Cases. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for
Computing Machinery, New York, NY, USA, 1398–1409. https://doi.org/10.1145/3377811.3380429

[106] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial Testing of RESTful APIs. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 426–437.
https://doi.org/10.1145/3510003.3510151

[107] Rahulkrishna Yandrapally, Saurabh Sinha, Rachel Tzoref-Brill, and Ali Mesbah. 2023. Carving UI Tests to Generate API Tests and API Specification.
In Proceedings of the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1971–1982.
https://doi.org/10.1109/ICSE48619.2023.00167

[108] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (mar 2012),
67–120. https://doi.org/10.1002/stv.430

[109] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and Qianxiang Wang. 2022. Automated Assertion Generation via
Information Retrieval and Its Integration with Deep Learning. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 163–174. https://doi.org/10.1145/3510003.3510149

[110] Lucas Zamprogno, Braxton Hall, Reid Holmes, and Joanne M. Atlee. 2023. Dynamic Human-in-the-Loop Assertion Generation. IEEE Transactions
on Software Engineering 49, 4 (2023), 2337–2351. https://doi.org/10.1109/TSE.2022.3217544

[111] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating
Natural Language Comments to Formal Program Specifications. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 25–37. https://doi.org/10.1145/3368089.3409716

[112] Man Zhang and Andrea Arcuri. 2021. Adaptive Hypermutation for Search-Based System Test Generation: A Study on REST APIs with EvoMaster.
ACM Trans. Softw. Eng. Methodol. 31, 1, Article 2 (sep 2021), 52 pages. https://doi.org/10.1145/3464940

[113] M. Zhang, A. Belhadi, and A. Arcuri. 2022. JavaScript Instrumentation for Search-Based Software Testing: A Study with RESTful APIs. In
2022 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE Computer Society, Los Alamitos, CA, USA, 105–115. https:
//doi.org/10.1109/ICST53961.2022.00022

[114] Yuntong Zhang, Xiang Gao, Gregory J. Duck, and Abhik Roychoudhury. 2022. Program Vulnerability Repair via Inductive Inference. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing
Machinery, New York, NY, USA, 691–702. https://doi.org/10.1145/3533767.3534387

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Manuscript submitted to ACM

https://doi.org/10.1109/ASE51524.2021.9678586
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1109/QRS-C51114.2020.00089
https://doi.org/10.1145/3184558.3191656
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1109/ICSE48619.2023.00167
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/3510003.3510149
https://doi.org/10.1109/TSE.2022.3217544
https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3464940
https://doi.org/10.1109/ICST53961.2022.00022
https://doi.org/10.1109/ICST53961.2022.00022
https://doi.org/10.1145/3533767.3534387

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Automated Testing of REST APIs
	2.2 Test Oracle Generation
	2.3 Daikon

	3 AGORA+
	3.1 Beet: A Daikon front-end for REST APIs
	3.2 Invariant Definition
	3.3 Minimizing false positives
	3.4 PostmanAssertify: Automated generation of test assertions

	4 Evaluation
	4.1 Experimental Data
	4.2 Experiment 1: Test Oracle Generation
	4.3 Experiment 2: Failure Detection

	5 Detected failures
	6 Threats to validity
	7 Conclusions
	References

